4.有這樣一段演繹推理:“指數(shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)”.上面推理顯然是錯誤的,是因為( 。
A.大前提錯導(dǎo)致結(jié)論錯B.小前提錯導(dǎo)致結(jié)論錯
C.推理形式錯導(dǎo)致結(jié)論錯D.大前提和小前提錯導(dǎo)致結(jié)論錯

分析 指數(shù)函數(shù)y=ax(a>0且a≠1)是R上的增函數(shù),這個說法是錯誤的,要根據(jù)所給的底數(shù)的取值不同分類說出函數(shù)的不同的單調(diào)性,即大前提是錯誤的.

解答 解:指數(shù)函數(shù)y=ax(a>0且a≠1)是R上的增函數(shù),
這個說法是錯誤的,要根據(jù)所給的底數(shù)的取值不同分類說出函數(shù)的不同的單調(diào)性,
大前提是錯誤的,
∴得到的結(jié)論是錯誤的,
故選A.

點評 本題考查演繹推理的基本方法,解題的關(guān)鍵是理解演繹推理的三段論原理,在大前提和小前提中,若有一個說法是錯誤的,則得到的結(jié)論就是錯誤的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知F1、F2是橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,直線l:y=k(x+1)經(jīng)過左焦點F1,且與橢圓G交于A、B兩點,△ABF2的周長為$4\sqrt{3}$.
(Ⅰ)求橢圓G的標準方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的前n項和為Sn,且S21=42,若記bn=2${\;}^{{a}_{11}^{2}-{a}_{9}-{a}_{13}}$,則數(shù)列{bn}(  )
A.是等差數(shù)列但不是等比數(shù)列B.是等比數(shù)列但不是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列D.既不是等差數(shù)列又不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]內(nèi)有且僅有兩個不同的根,則實數(shù)m的取值范圍是( 。
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.△ABC的外接圓圓心為P,若點P滿足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),則cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知數(shù)列{an}是等差數(shù)列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,求$sin({{a_4}+{a_6}+\frac{2017π}{2}})$的值;
(2)已知數(shù)列{an}是等差數(shù)列,且滿足${a_2}^2={a_1}{a_5},{a_1}+{a_2}+{a_5}=26$,求數(shù)列{an}的 通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\vec a=(1,cos2x),\vec b=(sin2x,-\sqrt{3})$,函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$f({\frac{θ}{2}+\frac{2π}{3}})=\frac{6}{5}$,求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={x|-3<x<2},B={x|0<x<3},則A∩B=(  )
A.{x|-3<x<0}B.{x|-3<x<3}C.{x|0<x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖所示的程序框圖,當(dāng)輸入x的值為3時,則其輸出的結(jié)果是1.

查看答案和解析>>

同步練習(xí)冊答案