甲有三本不同的書,乙去借閱,并且至少借1本,則不同借法的總數(shù)為
 
.(用數(shù)字作答)
考點:排列、組合及簡單計數(shù)問題
專題:排列組合
分析:只借一本的方法種數(shù),只借2本的方法種數(shù),三本不同的書全借的方法種數(shù),把這三個結果相加,即得所求.
解答: 解:只借一本的方法種數(shù)為 C31=3,
只借2本的方法種數(shù)為 C32=3,
三本不同的書全借的方法種數(shù)為1,
∴至少借一本的方法有 3+3+1=7 種,
故答案為:7.
點評:本題考查排列與組合及兩個基本原理,組合數(shù)公式的應用,體現(xiàn)了分類討論的數(shù)學思想,分類討論是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+3x(x≥0),對于曲線y=f(x)上橫坐標成公差為1的等差數(shù)列的三個點A,B,C,給出以下判斷:①△ABC一定是鈍角三角形;
②△ABC可能是直角三角形;
③△ABC可能為銳角三角形;
④△ABC不可能是等腰三角形,其中所有正確的序號是(  )
A、①②B、①③C、②③D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市直小學為了加強管理,對全校教職工實行新的臨時事假制度:“每位教職工每月在正常的工作時間,臨時有事,可請假至多三次,每次至多一小時”.現(xiàn)對該制度實施以來50名教職工請假的次數(shù)進行調(diào)查統(tǒng)計,結果如下表所示:
請假次數(shù)0123
人數(shù)5102015
根據(jù)上表信息解答以下問題:
(1)從該小學任選兩名教職工,用η表示這兩人請假次數(shù)之和,記“函數(shù)f(x)=x2-ηx-1在區(qū)(4,6)上有且只有一個零點”為事件A,求事件A發(fā)生的概率P;
(2)從該小學任選兩名職工,用ξ表示這兩人請假次數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinωx•cosωx+cos(2ωx+
π
3
)(ω>0)的最小正周期為2π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,當x=A時函數(shù)f(x)取到最值,且△ABC的面積為
3
3
2
,b+c=5,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ)(0<φ<π)的部分圖象,如圖所示,則φ=( 。
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件x≥0,y≥0,2x+y≤4,則
y+4
x+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設離散型隨機變量X可能取的值為1,2,3,4,P(X=k)=ka+b(k=1,2,3,4,且a>0,b>0),若E(X)=10,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,f(
x
5
)=
1
2
f(x),且0≤x1<x2≤1時,f(x1)≤f(x2),則f(
1
2015
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠A、∠B、∠C是△ABC的三個內(nèi)角,且滿足2sinA=
3
sinC-sinB
(Ⅰ)求∠A的取值范圍;
(Ⅱ)若∠A取最大值時∠B=
π
6
,且BC邊上的中線AM的長為
7
,求此時△ABC的面積.

查看答案和解析>>

同步練習冊答案