18.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(Ⅰ) 若a=-2,求A∩∁RB;   
(Ⅱ) 若A∪B=B,求a的取值范圍.

分析 (Ⅰ)把a(bǔ)=-2代入確定出A,求出B的補(bǔ)集,找出A與B補(bǔ)集的交集即可;
(Ⅱ)由A∪B=B,得到A⊆B,確定出a的范圍即可.

解答 解:(Ⅰ)若a=-2,則有A={x|-2≤x≤1},
∵={x|x<-1或x>5},
∴∁RB={x|-1≤x≤5},
則A∩∁RB={x|-1≤x≤1};
(Ⅱ)∵A∪B=B,∴A⊆B,
∵A={x|a≤x≤a+3},B={x|x<-1或x>5},
∴a+3<-1或a>5,
解得:a<-4或a>5,
則a的范圍為{a|a<-4或a>5}.

點(diǎn)評 此題考查了集合的包含關(guān)系判斷及應(yīng)用,以及交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.${∫}_{0}^{3}$|x-2|dx=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知拋物線C:x2=4y,直線l1與C相交于A,B兩點(diǎn),線段AB與它的中垂線l2交于點(diǎn)G(a,1)(a≠0).
(Ⅰ)求證:直線l2過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(Ⅱ)設(shè)l2分別交x軸,y軸于點(diǎn)M,N,是否存在實(shí)數(shù)a,使得A,M,B,N四點(diǎn)在同一個(gè)圓上,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知命題p:存在x∈R,使tan x=$\frac{\sqrt{2}}{2}$,命題q:x2-3x+2<0的解集是{x|1<x<2},下列結(jié)論:
①命題“p且q”是真命題;
②命題“p且¬q”是假命題;
③命題“¬p或q”是真命題;
④命題“¬p或¬q”是假命題,
其中正確的是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=2{sin^2}x+2sinx-\frac{1}{2}$,$x∈[{\frac{π}{6},\frac{5π}{6}}]$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,正方形ABCD中,坐標(biāo)原點(diǎn)O為AD的中點(diǎn),正方形DEFG的邊長為b,若D為拋物線y2=2ax(0<a<b)的焦點(diǎn),且此拋物線經(jīng)過C,F(xiàn)兩點(diǎn),則$\frac{a}$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題P1:平面向量$\overrightarrow a,\;\overrightarrow b$共線的充要條件是$\overrightarrow a$與$\overrightarrow b$方向相同;P2:函數(shù)y=2x-2-x在R上為增函數(shù),則在命題:q1:P1∨P2,q2:P1∧P2,q3:(?P1)∨P2和q4:P1∧(?P2)中,真命題是( 。
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.A83-2A73+A55=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,3Sn=an-1(n∈N*).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an和Sn

查看答案和解析>>

同步練習(xí)冊答案