6.已知命題p:存在x∈R,使tan x=$\frac{\sqrt{2}}{2}$,命題q:x2-3x+2<0的解集是{x|1<x<2},下列結論:
①命題“p且q”是真命題;
②命題“p且¬q”是假命題;
③命題“¬p或q”是真命題;
④命題“¬p或¬q”是假命題,
其中正確的是①②③④.

分析 分別判斷出p,q的真假,從而判斷出復合命題的真假即可.

解答 解:關于命題p:存在x∈R,使tan x=$\frac{\sqrt{2}}{2}$,是真命題,
命題q:x2-3x+2<0的解集是{x|1<x<2},是真命題,
故①命題“p且q”是真命題,正確;
②命題“p且¬q”是假命題,正確;
③命題“¬p或q”是真命題,正確;
④命題“¬p或¬q”是假命題,正確;
故答案為:①②③④.

點評 本題考查了符合命題的判斷,考查三角函數(shù)以及不等式的解法,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.3個男生和2個女生站成一排拍照,兩個女生必須站在一起,且不能站在兩端,不同的站法數(shù)是(  )
A.12B.24C.6D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=cos(2x+$\frac{π}{2}$)的周期是( 。
A.$\frac{π}{2}$B.$\frac{3π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知拋物線y2=2px(p>0)的焦點為F,過點F且傾斜角為60°的直線與拋物線交于A、B兩點(A點位于x軸上方),若△AOF的面積為3$\sqrt{3}$,則p=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,已知點S(0,3),SA,SB與圓C:x2+y2-my=0(m>0)和拋物線x2=-2py(p>0)都相切,切點分別為M,N和A,B,SA∥ON,則點A到拋物線準線的距離為(  )
A.4B.2$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點A是拋物線y=$\frac{{x}^{2}}{2}$上的一個動點,過A作圓D:x2+(y-$\frac{1}{2}$)2=r2(r>0)的兩條切線,它們分別切圓D于E,F(xiàn)兩點.
(1)當r=$\frac{3}{2}$,A點坐標為(2,2)時,求兩條切線的方程;
(2)對于給定的正數(shù)r,當A運動時,A總在圓D外部,直線EF都不通過的點構成一個區(qū)域,求這個區(qū)域的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(Ⅰ) 若a=-2,求A∩∁RB;   
(Ⅱ) 若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知集合A={x|x2-2x-3≥0},B={x|m-2≤x≤m+2,m∈R}.
(1)求Z∩∁RA;
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=kx+log9(9x+1)(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)g(x)=log9(a•3x-$\frac{4}{3}$a)的圖象與f(x)的圖象有且只有一個公共點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案