13.函數(shù)$y=2{sin^2}x+2sinx-\frac{1}{2}$,$x∈[{\frac{π}{6},\frac{5π}{6}}]$的最小值為1.

分析 令t=sinx換元,求出t的范圍,然后利用配方法求得答案.

解答 解:令t=sinx,∵$x∈[{\frac{π}{6},\frac{5π}{6}}]$,
∴t∈[$\frac{1}{2}$,1],
則原函數(shù)化為f(t)=$2{t}^{2}+2t-\frac{1}{2}$=$2(t+\frac{1}{2})^{2}-1$,t∈[$\frac{1}{2}$,1],
∴當t=$\frac{1}{2}$時,f(t)min=1.
故答案為:1.

點評 本題考查三角函數(shù)的最值,考查了配方法和換元法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.某海濱游樂場出租快艇的收費辦法如下:不超過十分鐘收費80元;超過十分鐘,超過部分按每分鐘10元收費(對于其中不足一分鐘的部分,若小于0.5分鐘則不收費,若大于或等于0.5分鐘則按一分鐘收費),小茗同學為該游樂場設計了一款收費軟件,程序框圖如圖所示,其中x(分鐘)為航行時間,y(元)為所收費用,用[x]表示不大于x的最大整數(shù),則圖中①處應填( 。
A.y=10[x]B.y=10[x]-20C.y=10[x-$\frac{1}{2}$]-20D.y=10[x+$\frac{1}{2}$]-20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-3.
(1)當a=1時,求f(x)在點(1,1)處的切線方程.
(2)如果對任意的$s,t∈[\frac{1}{2},2]$,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,已知點S(0,3),SA,SB與圓C:x2+y2-my=0(m>0)和拋物線x2=-2py(p>0)都相切,切點分別為M,N和A,B,SA∥ON,則點A到拋物線準線的距離為( 。
A.4B.2$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.時間經過10分鐘,則分針轉過的角等于(  )
A.-$\frac{π}{3}$B.$\frac{π}{3}$C.-$\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(Ⅰ) 若a=-2,求A∩∁RB;   
(Ⅱ) 若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.直線y=a(a為常數(shù))與y=tanωx(ω>0)的相鄰兩支的交點距離為( 。
A.πB.$\frac{π}{ω}$C.$\frac{π}{2ω}$D.與a有關的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知$\frac{a+2i}{i}$=b+i(a,b∈R),其中i為虛數(shù)單位,則a2+b2=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率與雙曲線$\frac{{y}^{2}}{3}$-x2=1的離心率互為倒數(shù),且長軸長為4.
(1)求橢圓C1的方程;
(2)在橢圓C1落在第一象限的圖象上任取一點作C1的切線l,求l與坐標軸圍成的三角形的面積的最小值.

查看答案和解析>>

同步練習冊答案