【題目】已知f(x)=logax(a>0且a≠1)的圖象過點(4,2),
(1)求a的值.
(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定義域.
(3)在(2)的條件下,求g(x)的單調(diào)減區(qū)間.
科目:高中數(shù)學 來源: 題型:
【題目】某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表,若成績120分以上(含120分)為優(yōu)秀.
分數(shù)區(qū)間 | 甲班頻率 | 乙班頻率 |
[0,30) | 0.1 | 0.2 |
[30,60) | 0.2 | 0.2 |
[60,90) | 0.3 | 0.3 |
[90,120) | 0.2 | 0.2 |
[120,150] | 0.2 | 0.1 |
優(yōu)秀 | 不優(yōu)秀 | 總計 | |
甲班 | |||
乙班 | |||
總計 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
(Ⅰ)求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成上面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等腰梯形中(如圖1),, , , 為邊上一點,且,將沿折起,使平面平面(如圖2).
(1)證明:平面平面;
(2)試在棱上確定一點,使截面把幾何體分成的兩部分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)在定義域[-1,1]上既是奇函數(shù),又是減函數(shù).
(1)求證:對任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點.
(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點M在直線x+y-3=0上,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 焦距為2,過點F2作直線l交橢圓于M、N兩點,△F1MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y= x,y=﹣ x于P,Q兩點,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com