11.下列函數(shù)中,周期為$\frac{π}{2}$的偶函數(shù)是(  )
A.y=sin2xcos2xB.y=cos22x-sin22xC.$y=\frac{tanx}{{1-{{tan}^2}x}}$D.y=2cos2x-1

分析 利用二倍角公式化簡函數(shù)的解析式,再利用三角函數(shù)的周期性和奇偶性,得出結(jié)論.

解答 解:∵y=sin2xcos2x=$\frac{1}{2}$sin4x,故它是奇函數(shù),不滿足條件,故排除A;
∵y=cos22x-sin22x=cos4x,它是偶函數(shù),周期為$\frac{2π}{4}$=$\frac{π}{2}$,滿足條件.
∵y=$\frac{tanx}{1{-tanx}^{2}}$=$\frac{1}{2}$tan2x,它是奇函數(shù),不滿足條件,故排除C;
∵y=2cos2x-1=cos2x,為偶函數(shù),它的周期為$\frac{2π}{2}$=π,不滿足條件,
故選:B.

點評 本題主要考查二倍角公式,三角函數(shù)的周期性和奇偶性,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“原函數(shù)與反函數(shù)的圖象關(guān)于y=x對稱”的否定是(  )
A.原函數(shù)與反函數(shù)的圖象關(guān)于y=-x對稱
B.原函數(shù)不與反函數(shù)的圖象關(guān)于y=x對稱
C.存在一個原函數(shù)與反函數(shù)的圖象不關(guān)于y=x對稱
D.存在原函數(shù)與反函數(shù)的圖象關(guān)于y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知在${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展開式中,常數(shù)項為60.
(1)求a;
(2)求含${x^{\frac{3}{2}}}$的項的系數(shù);
(3)求展開式中所有的有理項.
(4)求展開式中系數(shù)最大的項和二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=x3+sinx+1,若f(a)=2,則f(-a)=( 。
A.0B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,已知⊙O1與⊙O2相交于點M,N,NA為⊙O2的直徑,連接AM交⊙O1于點B,點C為$\widehat{AM}$的中點,連接CN分別與直線AB,⊙O1交于點D,E.求證:
(1)AC∥BE
(2)CD•BE2=CN•DE2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若a∈R,則“a<-1”是“|a|>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若$tan(θ-\frac{π}{4})=\frac{1}{3}$,則tanθ=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1,F(xiàn)2,以F1F2為直徑的圓被直線$\frac{x}{a}+\frac{y}=1$截得的弦長為$\sqrt{13}a$,則雙曲線的離心率為( 。
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中為偶函數(shù)又在(0,+∞)上是增函數(shù)的是( 。
A.$y={(\frac{1}{2})^{|x|}}$B.y=x2+2|x|C.y=|lnx|D.y=2-x

查看答案和解析>>

同步練習冊答案