已知函數(shù)f(x)=
x
,x≥0
e-x-ex,x<0
,若函數(shù)y=f(x)-k(x+1)有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(1,+∞)
B、(-
1
2
,0)
C、(0,
1
2
D、(
1
2
,1)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=f(x)-k(x+1)有三個(gè)零點(diǎn)可化為f(x)-k(x+1)=0有三個(gè)不同的解;易知x=-1不是方程的解,故可化為k=
f(x)
x+1
;從而作圖求解.
解答: 解:函數(shù)y=f(x)-k(x+1)有三個(gè)零點(diǎn)可化為f(x)-k(x+1)=0有三個(gè)不同的解;
易知x=-1不是方程的解,
故可化為k=
f(x)
x+1
;
作y=
f(x)
x+1
的圖象如下,

由圖象結(jié)合選項(xiàng)可知,
實(shí)數(shù)k的取值范圍是(0,
1
2
);
故選C.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì)與圖象的應(yīng)用,同時(shí)考查了數(shù)形結(jié)合的思想應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
tan(x-
π
4
)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A(x,y),B(-1,0),C(1,0),若∠A=
π
2
,則點(diǎn)A的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則cos2θ=(  )
A、
4
5
B、-
4
5
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則折痕EF的長(zhǎng)為( 。
A、6
B、12
C、2
5
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中an>0,且a1+a2+…+a20=60,則a10•a11的最大值等于( 。
A、3B、6C、9D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓2x2+3y2=6的長(zhǎng)軸長(zhǎng)是( 。
A、
3
B、
2
C、2
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù).若x≥0時(shí),f(x)=x2-2x.
(Ⅰ)當(dāng)x<0時(shí),求函數(shù)f(x)的解析式;
(Ⅱ)畫出f(x)的簡(jiǎn)圖;(要求繪制在答題卷的坐標(biāo)紙上);
(Ⅲ)結(jié)合圖象寫出f(x)的單調(diào)區(qū)間(只寫結(jié)論,不用證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinπx,x≤1
f(x-1),x>1
那么f(
4
3
)的值為( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案