19.某校新生分班,現(xiàn)有A,B,C三個不同的班,兩名關系不錯的甲和乙同學會被分到這三個班,每個同學分到各班的可能性相同,則這兩名同學被分到同一個班的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{3}$D.$\frac{3}{4}$

分析 利用列舉法求出甲乙兩同學分班的所有情況和符合條件的各種情況,由此能求出這兩名同學被分到同一個班的概率.

解答 解:甲乙兩同學分班共有以下情況:
(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),
其中符合條件的有三種,
所以這兩名同學被分到同一個班的概率為p=$\frac{3}{9}=\frac{1}{3}$.
故選:A.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動點.且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(1)求證:不論λ取何值,總有EF∥平面BCD;
(2)求證:不論λ取何值,總有平面BEF⊥平面ABC;
(3)是否存在λ,使得平面BEF⊥平面ACD?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列說法正確的是( 。
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,則$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.△ABC中,A>B是sinA>sinB的充分必要條件
C.命題“若a=-1,則f(x)=ax2+2x-1只有一個零點”的逆命題為真
D.設命題p:?x>0,x2>2x,則¬p:?x0≤0,x02≤2x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某正三棱柱(底面是正三角形的直棱柱)的正視圖和俯視圖如圖所示.若它的體積為2$\sqrt{3}$,則它的側視圖面積為(  )
A.2$\sqrt{3}$B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖是一個幾何體的三視圖,若它的體積是$\frac{2}{3}$,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周長的最小值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.給出以下結論:
①直線l1,l2的傾斜角分別為α1,α2,若l1⊥l2,則|α12|=90°;
②對任意角θ,向量$\overrightarrow{e_1}$=(cosθ,sinθ)與$\overrightarrow{e_2}$=(cosθ-$\sqrt{3}$sinθ,$\sqrt{3}$cosθ+sinθ)的夾角為$\frac{π}{3}$;
③若△ABC滿足$\frac{a}{cosB}$=$\frac{cosA}$,則△ABC一定是等腰三角形;
④對任意的正數(shù)a,b,都有1<$\frac{{\sqrt{a}+\sqrt}}{{\sqrt{a+b}}}$≤$\sqrt{2}$.
其中錯誤結論的編號是③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知集合A={x|3≤x<7},B={x|2<x<10},全集為實數(shù)集R
(1)求A∪B
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.某地實行階梯電價,以日歷年(每年1月1日至12月31日)為周期執(zhí)行居民階梯電價,即:一戶居民用戶全年不超過2880度(1度=千瓦時)的電量,執(zhí)行第一檔電價標準,每度電0.4883元;全年超過2880度至4800度之間的電量,執(zhí)行第二檔電價標準,每度電0.5383元;全年超過4800度以上的電量,執(zhí)行第三檔電價標準,每度電0.7883元.下面是關于階梯電價的圖形表示,其中正確的有(參考數(shù)據(jù):0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.)(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步練習冊答案