如圖,已知點(diǎn)為橢圓右焦點(diǎn),圓與橢圓的一個(gè)公共點(diǎn)為,且直線與圓相切于點(diǎn).
(1)求的值及橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)滿足,其中M、N是橢圓上的點(diǎn),為原點(diǎn),直線OM與ON的斜率之積為,求證:為定值.
(1);(2)證明過程詳見解析.
【解析】
試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)等基礎(chǔ)知識,考查學(xué)生分析問題解決問題的能力和計(jì)算能力.第一問,由橢圓C過點(diǎn)(0,1)點(diǎn),所以得到,由,得,在直角三角形AFB中,利用勾股定理求參數(shù)a,c的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,設(shè)出點(diǎn)M,N,P的坐標(biāo),代入到中,得到與、的關(guān)系,得到與、的關(guān)系,又由于點(diǎn)M,N在橢圓上,代入橢圓方程中,得到關(guān)系式,都代入到所求的式子中,化簡得到定值.
試題解析:(1)由題意可知,又.又 . 2分
在中,,
故橢圓的標(biāo)準(zhǔn)方程為: 6分
(2)設(shè)
∵M(jìn)、N在橢圓上,∴
又直線OM與ON的斜率之積為,∴,
于是
.故為定值.
13分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省東營市高三4月統(tǒng)一質(zhì)量檢測考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖所示程序框圖中,輸出 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省皖北協(xié)作區(qū)高三年級聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若,且則“”是“”的( )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
在中,分別為角的對邊,若,且,則邊等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
右圖是棱長為2的正方體的表面展開圖,則多面體的體積為( )
A. 2 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)其中向量,.
(1)求的最小值,并求使取得最小值的的集合;
(2)將函數(shù)的圖象沿軸向右平移,則至少平移多少個(gè)單位長度,才能使得到的函數(shù)的圖象關(guān)于軸對稱?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在中,角的對邊分別是.若,且,
則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省合肥市高三第二次教學(xué)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)滿足:對定義域內(nèi)的任意,都有,則函數(shù)可以是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省“皖西七!备呷昙壜(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
命題“若,則一元二次方程有實(shí)根”的原命題與其逆命題、否命題、逆否命題中真命題的個(gè)數(shù)是( )
A.0 B.2 C.4 D.不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com