13.若x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5,則a2+a3+a4+a5=0.

分析 x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5,令x=1,可得:1=a1+a2+a3+a4+a5,另一方面:x(1-2x)4的一次項(xiàng)的系數(shù)為1.可得a1.即可得出.

解答 解:∵x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5
令x=1,則1×(1-2)4=1=a1+a2+a3+a4+a5,
另一方面:x(1-2x)4的一次項(xiàng)的系數(shù)為1×1=1.
∴a1=1.
則a2+a3+a4+a5=1-1=0.
故答案為:0.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.奇函數(shù)f(x)的定義域?yàn)椋?5,5),若x∈[0,5)時(shí),f(x)的圖象如圖所示,則不等式f(x)<0的解集為(-2,0)∪(2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.圓x2+y2-2x+2y=0的圓心到直線y=x+1的距離是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.冪函數(shù)y=x-2的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在三棱錐P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱錐P-ABC的外接球的表面積為8π,則該三棱錐的體積為( 。
A.$\frac{\sqrt{2}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在正六邊形ABCDEF中,|$\overrightarrow{AC}$|=2$\sqrt{3}$,則$\overrightarrow{AF}$•$\overrightarrow{FB}$等于( 。
A.-6B.6C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為M,右焦點(diǎn)為F,過F的直線l與雙曲線交于A,B兩點(diǎn),且滿足:$\overrightarrow{MA}$$+\overrightarrow{MB}$=2$\overrightarrow{MF}$,$\overrightarrow{MA}•\overrightarrow{MB}$=0,則該雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的頂點(diǎn)為A1,A2,P為雙曲線上一點(diǎn),直線PA1交雙曲線C的一條漸近線于M點(diǎn),直線A2M和A2P的斜率分別為k1,k2,若A2M⊥PA1且k1+4k2=0,則雙曲線C離心率為(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以雙曲線$\frac{x^2}{9}-\frac{y^2}{16}$=1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程是( 。
A.$\frac{x^2}{16}+\frac{y^2}{9}$=1B.$\frac{x^2}{25}+\frac{y^2}{16}$=1C.$\frac{x^2}{25}+\frac{y^2}{9}$=1D.$\frac{x^2}{16}+\frac{y^2}{25}$=1

查看答案和解析>>

同步練習(xí)冊答案