5.面積為$\sqrt{3}$的等邊三角形繞其一邊上的中線(xiàn)旋轉(zhuǎn)所得圓錐的側(cè)面積是2π..

分析 根據(jù)旋轉(zhuǎn)的平面圖形想象出所得旋轉(zhuǎn)體的結(jié)構(gòu)特征,再由平面圖形求出所得旋轉(zhuǎn)體的幾何元素的長(zhǎng)度,代入體積公式進(jìn)行求解.

解答 解:∵等邊三角形的面積為$\sqrt{3}$,
∴等邊三角形的邊長(zhǎng)為2,
繞其一邊上的中線(xiàn)旋轉(zhuǎn)所得圓錐的底面半徑為1,
∴圓錐的側(cè)面積是π•1•2=2π.
故答案為2π.

點(diǎn)評(píng) 本題的考點(diǎn)是旋轉(zhuǎn)體的體積求法,關(guān)鍵是由平面圖形想象出所得旋轉(zhuǎn)體的結(jié)構(gòu)特征,考查了空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.“ω=2”是函數(shù)f(x)=cos2$\frac{1}{2}$ωx-sin2 $\frac{1}{2}$ωx的最小正周期為π的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.小于2的自然數(shù)集用列舉法可以表示為( 。
A.{0,1,2}B.{1}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.公比為$-\frac{1}{2}$的等比數(shù)列{an}的前6項(xiàng)和S6=21,則2a1+a6=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$f(x)=\left\{\begin{array}{l}|{l}o{g_{\frac{1}{2}}}x|,0<x≤4\\|6-x|,x>4\end{array}\right.$存在a<b<c<d,使f(a)=f(b)=f(c)=f(d),則$\frac{c+d}{2ab}$的值為( 。
A.1B.3
C.6D.與a,b,c,d的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2-x(4x-m)是奇函數(shù),g(x)=lg(10x+1)+nx是偶函數(shù)
(1)求m+n的值;
(2)設(shè)h(x)=f(x)+g(x)+$\frac{1}{2}$x,試求h(x)在x∈[-1,2]時(shí)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$f(x)=sin(\frac{x}{2}+\frac{π}{6})$的對(duì)稱(chēng)軸為x=2kπ+$\frac{2π}{3}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=cos2x+2sinxcosx,則下列說(shuō)法正確的是( 。
A.若f(x1)=f(x2),則x1+x2=kπ
B.f(x)的圖象關(guān)于點(diǎn)$({-\frac{3π}{8},0})$對(duì)稱(chēng)
C.f(x)的圖象關(guān)于直線(xiàn)$x=\frac{5π}{8}$對(duì)稱(chēng)
D.f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后得$g(x)=\sqrt{2}sin({2x+\frac{3π}{4}})$的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.曲線(xiàn)f(x)=x3+2x+3在(1,f(1))處的切線(xiàn)方程為5x-y+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案