17.已知cosα=-$\frac{15}{17}$,α∈($π,\frac{3}{2}π$),求sin2α,cos$\frac{α}{2}$的值.

分析 由同角三角函數(shù)基本關(guān)系和角的范圍可得sinα,由二倍角正弦可得sin2α,又可得cos$\frac{α}{2}$<0,由半角公式可得.

解答 解:∵cosα=-$\frac{15}{17}$,α∈($π,\frac{3}{2}π$),
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{8}{17}$,
∴sin2α=2sinαcosα=$\frac{240}{289}$;
由α∈($π,\frac{3}{2}π$)可得$\frac{α}{2}$∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴cos$\frac{α}{2}$<0,
再由cosα=2cos2$\frac{α}{2}$-1=-$\frac{15}{17}$可解得cos$\frac{α}{2}$=$\frac{\sqrt{17}}{17}$

點(diǎn)評 本題考查倍角公式和半角公式,注意角的范圍影響函數(shù)值的正負(fù)是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{1-cos^2x}$+sinx.
(1)求函數(shù)f(x)的值域和最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線f(x)=f′(2)lnx-f(1)x+2x2在點(diǎn)(1,f(1))處的切線方程為15x+y-14=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個(gè)等比數(shù)列的第7項(xiàng)是12,第9項(xiàng)是18,求它的第8項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.據(jù)市場調(diào)查結(jié)果,預(yù)測某種家用商品從2014年初開始,n個(gè)月內(nèi)累計(jì)的需求量Sn(萬件)近似地滿足Sn=2ln2-n3(n=1,2,…,12),按此預(yù)測在本年度內(nèi),需求量最大的月份是( 。
A.5月、6月B.6月、7月C.7月、8月D.8月、9月

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知平面直角坐標(biāo)系中點(diǎn)Q(2,0)和圓O:x2+y2=1,動點(diǎn)M到圓O的切線長|MN|與|MQ|相等,求動點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,橢圓$W:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,其左頂點(diǎn)A在圓O:x2+y2=16上.
(Ⅰ)求橢圓W的方程;
(Ⅱ)直線AP與橢圓W的另一個(gè)交點(diǎn)為P,與圓O的另一個(gè)交點(diǎn)為Q.
(i)當(dāng)$|AP|=\frac{{8\sqrt{2}}}{5}$時(shí),求直線AP的斜率;
(ii)是否存在直線AP,使得$\frac{|PQ|}{|AP|}=3$?若存在,求出直線AP的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在如圖所示的幾何體ABD-A1B1C1D1中,底面A1B1C1D1是矩形,AA1⊥平面A1B1C1D1,且AA1平行且等于BB1平行且等于DD1,若∠DC1D1=-$\frac{π}{4}$,∠BC1B1=$\frac{π}{3}$,BC1=2,則該幾何體的體積是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{8}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)a,b∈R,函數(shù)f(x)=ax2+lnx+b的圖象在點(diǎn)(1,f(1))處的切線方程為4x+4y+1=0.
(1)求函數(shù)f(x)的最大值;
(2)證明:f(x)<x3-2x2

查看答案和解析>>

同步練習(xí)冊答案