7.在下列命題中:
①存在一個(gè)平面與正方體的12條棱所成的角都相等;
②存在一個(gè)平面與正方體的6個(gè)面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個(gè)面所成的角都相等.
其中真命題為①②③④.

分析 平面AB1D1與正方體的12條棱所成的角都相等,且平面AB1D1與正方體的6個(gè)面所成較小的二面角都相等;直線AC1與正方體的12條棱所成的角都相等,且直線AC1與正方體的6個(gè)面所成的角都相等.

解答 解:如圖,連接AB1D1,則A1-AB1D1為正三棱錐,則A1B1、A1D1、A1A與平面AB1D1所成角相等,
則存在一個(gè)平面AB1D1與正方體的12條棱所成的角都相等,故①正確;
正三棱錐A1-AB1D1的三個(gè)側(cè)面與底面AB1D1所成角相等,
則存在一個(gè)平面AB1D1與正方體的6個(gè)面所成較小的二面角都相等,故②正確;
③存在一條直線AC1與正方體的12條棱所成的角都相等,故③正確;
④存在一條直線AC1與正方體的6個(gè)面所成的角都相等,故④正確.
故答案為:①②③④.

點(diǎn)評(píng) 本題考查命題真假的判斷與應(yīng)用,考查空間想象能力和思維能力,注意正方體結(jié)構(gòu)特征的合理運(yùn)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)兩條相鄰的對(duì)稱軸之間的距離為$\frac{π}{2}$,若其圖象向右平移$\frac{π}{3}$個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)( 。
A.關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱B.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱
C.關(guān)于直線x=$\frac{5π}{12}$對(duì)稱D.關(guān)于直線x=$\frac{π}{12}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在四棱錐E-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,AC與BD交于點(diǎn)O,EC⊥底面ABCD,F(xiàn)為BE的中點(diǎn).
(Ⅰ)求證:DE∥平面ACF;
(Ⅱ)求證:BD⊥AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,某流動(dòng)海洋觀測(cè)船開(kāi)始位于燈塔B的北偏東θ(0<θ<$\frac{π}{2}$)方向,且滿足2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ=1,AB=AD,在接到上級(jí)命令后,該觀測(cè)船從A點(diǎn)位置沿AD方向在D點(diǎn)補(bǔ)充物資后沿BD方向在C點(diǎn)投浮標(biāo),使得C點(diǎn)于A點(diǎn)的距離為4$\sqrt{3}$km,則該觀測(cè)船行駛的最遠(yuǎn)航程為8km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列等式中,正確的個(gè)數(shù)是(  )
(1)$\root{n}{a^n}=|a|$;            
(2)若a∈R,則(a2-a+1)0=1;
(3)$\root{3}{{{x^4}+{y^3}}}=\root{3}{x^4}+y$;    
(4)$\root{3}{-1}=\root{6}{{{{(-1)}^2}}}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,等高的正三棱錐P-ABC與圓錐SO的底面都在平面M上,且圓O過(guò)點(diǎn)A,又圓O的直徑AD⊥BC,垂足為E,設(shè)圓錐SO的底面半徑為1,圓錐高為$\sqrt{3}$.

(1)求圓錐的側(cè)面積;
(2)若平行于平面M的一個(gè)平面N截得三棱錐與圓錐的截面面積之比為$\frac{{\sqrt{3}}}{π}$,求三棱錐的側(cè)棱PA與底面ABC所成角的大。
(3)求異面直線AB與SD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)$y=\frac{4-cosx}{2cosx+3}$的值域?yàn)?[\frac{3}{5},5]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,∠B=$\frac{π}{4}$,∠C=$\frac{5π}{12}$,AC=2$\sqrt{6}$,AC的中點(diǎn)為D,若長(zhǎng)度為3的線段PQ(P在Q的左側(cè))在直線BC上滑動(dòng),則AP+DQ的最小值為$\frac{3\sqrt{10}+\sqrt{30}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知數(shù)列{an}滿足a1+a2+…+an=n2+3n(n∈N+),則$\frac{{a}_{1}^{2}}{2}+\frac{{a}_{2}^{2}}{3}+…+\frac{{a}_{n}^{2}}{n+1}$=2n2+6n.

查看答案和解析>>

同步練習(xí)冊(cè)答案