【題目】在中,D,E,F分別是邊,,中點,下列說法正確的是( )
A.
B.
C.若,則是在的投影向量
D.若點P是線段上的動點,且滿足,則的最大值為
【答案】BCD
【解析】
對選項A,B,利用平面向量的加減法即可判斷A錯誤,B正確.對選項C,首先根據(jù)已知得到為的平分線,即,再利用平面向量的投影概念即可判斷C正確.對選項D,首先根據(jù)三點共線,設,,再根據(jù)已知得到,從而得到,即可判斷選項D正確.
如圖所示:
對選項A,,故A錯誤.
對選項B,
,故B正確.
對選項C,,,分別表示平行于,,的單位向量,
由平面向量加法可知:為的平分線表示的向量.
因為,所以為的平分線,
又因為為的中線,所以,如圖所示:
在的投影為,
所以是在的投影向量,故選項C正確.
對選項D,如圖所示:
因為在上,即三點共線,
設,.
又因為,所以.
因為,則,.
令,
當時,取得最大值為.故選項D正確.
故選:BCD
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
①由圓的性質(zhì)類比出球的有關性質(zhì);
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是歸納出所有三角形的內(nèi)角和都是;③由,滿足,,推出是奇函數(shù);
④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.
A. ①②B. ①③④C. ②④D. ①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩個不共線的向量,夾角為,且,,為正實數(shù).
(1)若與垂直,求的值;
(2)若,求的最小值及對應的x的值,并指出此時向量與的位置關系.
(3)若為銳角,對于正實數(shù)m,關于x的方程兩個不同的正實數(shù)解,且,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列敘述錯誤的是( )
A.已知直線和平面,若點,點且,,則
B.若三條直線兩兩相交,則三條直線確定一個平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐A﹣BCD中,BCD是邊長為的等邊三角形,,二面角A﹣BC﹣D的大小為θ,且,則三棱錐A﹣BCD體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率是40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下10組隨機數(shù):907 966 191 925 271 431 932 458 569 683.
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為創(chuàng)建全國文明城市,我市積極打造“綠城”的創(chuàng)建目標,使城市環(huán)境綠韻縈繞,使市民生活綠意盎然.有效增加城區(qū)綠化面積,提高城區(qū)綠化覆蓋率,提升城市形象品位.林業(yè)部門推廣種植甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)根據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)根據(jù)莖葉圖,計算甲、乙兩種樹苗的高度的方差,運用統(tǒng)計學知識分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱的底面為菱形, , , 為中點.
(1)求證: 平面;
(2)若底面,且直線與平面所成線面角的正弦值為,求的長.
【答案】(1)證明見解析;(2)2.
【解析】試題分析:(1)設為的中點,根據(jù)平幾知識可得四邊形是平行四邊形,即得,再根據(jù)線面平行判定定理得結(jié)論,(2)根據(jù)條件建立空間直角坐標系,設立各點坐標,利用方程組解得平面一個法向量,根據(jù)向量數(shù)量積求向量夾角,再根據(jù)線面角與向量夾角互余關系列等式,解得的長.
試題解析:(1)證明:設為的中點,連
因為,又,所以 ,
所以四邊形是平行四邊形,
所以
又平面, 平面,
所以平面.
(2)因為是菱形,且,
所以是等邊三角形
取中點,則,
因為平面,
所以,
建立如圖的空間直角坐標系,令,
則, , , ,
, , ,
設平面的一個法向量為,
則且,
取,設直線與平面所成角為,
則,
解得,故線段的長為2.
【題型】解答題
【結(jié)束】
20
【題目】橢圓:的左、右焦點分別為、,若橢圓過點.
(1)求橢圓的方程;
(2)若為橢圓的左、右頂點, ()為橢圓上一動點,設直線分別交直線: 于點,判斷線段為直徑的圓是否經(jīng)過定點,若是,求出該定點坐標;若不恒過定點,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com