3.已知A、B、C、D為同一平面上的四個(gè)點(diǎn),且滿足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面積為S,△BCD的面積為T.
(1)當(dāng)θ=$\frac{π}{3}$時(shí),求T的值;
(2)當(dāng)S=T時(shí),求cosθ的值.

分析 (1)在△ABD中,由余弦定理求出BD,cos∠BCD,由此能出△BCD的面積T.
(2)由S=$\frac{1}{2}AD•AB•sin∠BCD=sinθ$,得到sinθ=$\frac{1}{2}sin∠BCD$,從而4sin2θ=sin2∠BCD=1-cos2∠BCD=1-($\frac{4cosθ-3}{2}$)2,由此能求出cosθ.

解答 解:(1)在△ABD中,由余弦定理得BD2=AB2+AD2-2AB•ADcosθ=3,
∴BD=$\sqrt{3}$,
在△BCD中,由余弦定理得cos∠BCD=$\frac{B{C}^{2}+C{D}^{2}-B{D}^{2}}{2BC•CD}$=$\frac{{1}^{2}+{1}^{2}-(\sqrt{3})^{2}}{2×1×1}$=-$\frac{1}{2}$,
∴∠BCD=120°,
∴T=$\frac{1}{2}×BC×CD×sin∠BCD$=$\frac{1}{2}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$.
(2)S=$\frac{1}{2}AD•AB•sin∠BCD=sinθ$,
BD2=AD2+AB2-2AD•ABcosθ=5-4cosθ,
cos∠BCD=$\frac{B{C}^{2}+C{D}^{2}-B{D}^{2}}{2BC•CD}$=$\frac{4cosθ-3}{2}$,
T=$\frac{1}{2}CD•BC•sin∠BCD$=$\frac{1}{2}sin∠BCD$,
∵S=T,∴sinθ=$\frac{1}{2}sin∠BCD$,
∴4sin2θ=sin2∠BCD=1-cos2∠BCD=1-($\frac{4cosθ-3}{2}$)2
解得cosθ=$\frac{7}{8}$.

點(diǎn)評(píng) 本題考查三角形面積的求法,考查角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某小區(qū)一住戶在樓頂違規(guī)私自建了“陽光房”,該小區(qū)其他居民對(duì)此意見很大,通過物業(yè)和城管部門多次上門協(xié)調(diào),該住戶終于拆除了“陽光房”,對(duì)此有人認(rèn)為既然已經(jīng)建成再拆除太可惜了,為此業(yè)主委員會(huì)通過隨機(jī)詢問小區(qū)100名性別不同的居民對(duì)此件事情的看法,得到如下的2×2列聯(lián)表
認(rèn)為應(yīng)該拆除認(rèn)為太可惜了總計(jì)
451055
301545
總計(jì)7525100
附:
P(K2≥k)0.100.050.025
k2.7063.8415.024
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參照附表,由此可知下列選項(xiàng)正確的是(  )
A.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“是否認(rèn)為拆除太可惜了與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“是否認(rèn)為拆除太可惜了與性別無關(guān)”
C.有90%以上的把握認(rèn)為“是否認(rèn)為拆除太可惜了與性別有關(guān)”
D.有90%以上的把握認(rèn)為“是否認(rèn)為拆除太可惜了與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.$\underset{lim}{x→\frac{π}{2}}$$\frac{cos2x}{x}$=( 。
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{2}{π}$D.-$\frac{2}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s為參數(shù)),曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t為參數(shù)),若直線l與曲線C相交于A,B兩點(diǎn),則|AB|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在$\widehat{AB}$上,且OM∥AC.
(1)求證:平面MOE⊥平面PCB;
(2)求二面角M-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.設(shè)點(diǎn)A,B分別在曲線C1:$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$(θ為參數(shù))和曲線C2:ρ=1上,求AB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=t}\end{array}\right.$,曲線C的極坐標(biāo)方程為ρ=4sinθ,試判斷直線l與曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|a+1≤x≤4a+1},B={x|-3≤x≤5},且A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.[0,1]C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.${∫}_{-a}^{a}$x2[f(x)-f(-x)+2]dx=4a.

查看答案和解析>>

同步練習(xí)冊答案