8.在平面直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系.設(shè)點A,B分別在曲線C1:$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$(θ為參數(shù))和曲線C2:ρ=1上,求AB的最大值.

分析 把曲線C1的參數(shù)方程化為普通方程,把曲線C2的極坐標方程化為直角坐標方程,求出圓心距離,即可得出最大值.

解答 解:曲線C1:$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$(θ為參數(shù)),消去參數(shù)θ化為曲線C1:(x-3)2+(y-4)2=4,
曲線C1是以(3,4)為圓心,1為半徑的圓;
曲線C2:ρ=1,化為直角坐標方程:x2+y2=1,是以(0,0)為圓心,1為半徑的圓,
可求得兩圓圓心距|C1C2|=$\sqrt{{3}^{2}+{4}^{2}}$=5,∵AB≤5+2+1=8,∴AB的最大值為8.

點評 本題考查了參數(shù)方程化為普通方程、極坐標方程化為直角坐標方程、兩點之間的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標系xOy中,A(1,3),B(4,2),若直線ax-y-2a=0與線段AB有公共點,則實數(shù)a的取值范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)若PA=PB,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A、B、C、D為同一平面上的四個點,且滿足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面積為S,△BCD的面積為T.
(1)當θ=$\frac{π}{3}$時,求T的值;
(2)當S=T時,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標系中,過點P(3,1)的直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+tcosα}\\{y=1+tsinα}\end{array}}\right.$(t為參數(shù),α為l的傾斜角).以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系.曲線C1:ρ=2cosθ,曲線C2:ρ=4cosθ.
(Ⅰ)若直線l與曲線C1有且僅有一個公共點,求直線l的極坐標方程;
(Ⅱ)若直線l與曲線C1交于不同兩點C、D,與C2交于不同兩點A、B,這四點從左至右依次為B、D、C、A,求|AC|-|BD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l:$\left\{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α≠0)經(jīng)過橢圓C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ為參數(shù))的左焦點F.
(1)求實數(shù)m的值;
(2)設(shè)直線l與橢圓C交于A、B兩點,求|FA|×|FB|取最小值時,直線l的傾斜角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)[x]表示不超過x的最大整數(shù),如[1]=1,[0.5]=0,已知函數(shù)f(x)=$\frac{[x]}{x}$-k(x>0),若方程f(x)=0有且僅有3個實根,則實數(shù)k的取值范圍是( 。
A.$({\frac{1}{2},\frac{2}{3}}]$B.$({\frac{2}{3},\frac{3}{4}}]$C.$({\frac{3}{4},\frac{4}{5}}]$D.$({\frac{4}{5},\frac{5}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=$\sqrt{x+2}$-$\sqrt{1-x}$的值域為[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

同步練習(xí)冊答案