隨機(jī)變量ξ的概率分布規(guī)律為P(ξ=k)=a(11-2k)(k=1,2,3,4,5),其中a是常數(shù),則P(
5
2
<ξ<
13
3
) 的值為
 
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:由已知得9a+7a+5a+3a+a=1,解得a=
1
25
,從而P(
5
2
<ξ<
13
3
)=P(ξ=3)+P(ξ=4)=5a+3a=8a=
8
25
解答: 解:∵隨機(jī)變量ξ的概率分布規(guī)律為P(ξ=k)=a(11-2k)(k=1,2,3,4,5),
∴9a+7a+5a+3a+a=1,
解得a=
1
25

∴P(
5
2
<ξ<
13
3
)=P(ξ=3)+P(ξ=4)=5a+3a=8a=
8
25

故答案為:
8
25
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
sinA
sinB+sinC
=
b-c
a-c

(1)求角B;
(2)求sinA•cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以M(-1,0)為圓心的圓與直線x-
3
y-3=0相切.
(Ⅰ)求圓M的方程;
(Ⅱ)如果圓M上存在不同兩點(diǎn)關(guān)于直線mx+y+1=0對(duì)稱,求m的值;
(Ⅲ)若對(duì)圓M上的任意動(dòng)點(diǎn)P(x,y),求2x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

運(yùn)行如圖所示的程序框圖,則輸出的所有實(shí)數(shù)對(duì)(x,y)所對(duì)應(yīng)的點(diǎn)都在函數(shù)( 。
A、y=x-1的圖象上
B、y=
x
-1
的圖象上
C、y=2x-1-1的圖象上
D、y=log2x的圖象上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a∈R,b∈R,ab=3則(a+b)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將編號(hào)為1,2,3的三個(gè)小球隨意放入編號(hào)為1,2,3的三個(gè)紙箱中,每個(gè)紙箱內(nèi)有且只有一個(gè)小球,稱此為一輪“放球”,設(shè)一輪“放球”后編號(hào)為i(i=1,2,3)的紙箱放入的小球編號(hào)為ai,定義吻合度誤差為ξ=|1-a1|+|2-a2|+|3-a3|.假設(shè)a1,a2,a3等可能地為1、2、3的各種排列,求:
(1)某人一輪“放球”滿足ξ=2時(shí)的概率.
(2)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:a2-4a-4<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x+4y+5=0關(guān)于x軸對(duì)稱的直線的方程為(  )
A、3x-4y+5=0
B、3x+4y-5=0
C、4x+3y-5=0
D、4x+3y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)a,b滿足a+2b=1,則a2+2b=1,則a2+4b2+
1
ab
的最小值
 

查看答案和解析>>

同步練習(xí)冊(cè)答案