若函數(shù)f(x)=x2-ax+2的兩個(gè)零點(diǎn)分別在區(qū)間(0,1)和(1,3)內(nèi),則a的取值范圍( 。
A、(2,
11
3
B、[2,3)
C、(3,
11
3
D、(
11
3
,4)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)=x2-ax+2的兩個(gè)零點(diǎn)分別在區(qū)間(0,1)和(1,3)內(nèi)得
f(0)=2>0
f(1)=1-a+2<0
f(3)=9-3a+2>0
;從而解得.
解答: 解:∵函數(shù)f(x)=x2-ax+2的兩個(gè)零點(diǎn)分別在區(qū)間(0,1)和(1,3)內(nèi),
f(0)=2>0
f(1)=1-a+2<0
f(3)=9-3a+2>0
;
解得,3<a<
11
3
;
故選C.
點(diǎn)評(píng):本題考查了二次函數(shù)的零點(diǎn)的位置的判斷與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù),又是減函數(shù)的是( 。
A、y=-x3
B、y=sinx
C、y=tanx
D、y=(
1
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從高中部年滿16周歲的學(xué)生中隨機(jī)抽取來自高二和高三學(xué)生各10名,測(cè)量他們的身高,數(shù)據(jù)如下(單位:cm)
高二:166158170169180171176175162163
高三:157183166179173169163171175178
(I)若將樣本頻率視為總體的概率,從樣本中來自高二且身高不低于170的學(xué)生中隨機(jī)抽取3名同學(xué),求其中恰有兩名同學(xué)的身高低于175的概率;
(II)根據(jù)抽測(cè)結(jié)果補(bǔ)充完整下列莖葉圖,并根據(jù)莖葉圖對(duì)來自高二和高三學(xué)生的身高作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x+b
x2+4
(b為常數(shù))的最大值為
1
2
,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式的(x-2)(2x-3)<0解集是( 。
A、(-∞,
3
2
)∪(2,+∞)
B、R
C、(
3
2
,2)
D、φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<π)的部分圖象如圖所示.
(1)求函數(shù)f(x)解析式;
(2)說明y=f(x)的圖象如何由y=sinx的圖象變換得到的(填空)
y=sinx(
 
)→( y=sin(x+
3
)。
 
)→(y=sin(2x+
3
))
 
)→(f(x)=3sin(2x+
3
))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,對(duì)于使-x2+2x≤M成立的所有常數(shù)M中,我們把M的最小值1叫做-x2+2x的上確界.若a,b∈R+,且a+b=1,則-
1
2a
-
2
b
的上確界為( 。
A、-5
B、-4
C、
9
2
D、-
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將y=f(x)的圖象向右平移
π
6
個(gè)單位后得到新函數(shù)g(x)的圖象,求函數(shù)g(x)的解析式;
(Ⅲ)求函數(shù)2f(x)-g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2-x
+ln(x+1)的定義域?yàn)椋ā 。?/div>
A、(2,+∞)
B、(-1,2)∪(2,+∞)
C、(-1,2)
D、(-1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案