A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -$\frac{7\sqrt{2}}{2}$ | D. | $\frac{7\sqrt{2}}{2}$ |
分析 根據(jù)cosA=-$\frac{3}{5}$得出A為鈍角,sinA=$\frac{4}{5}$,利用正弦定理求出B,再利用余弦定理求出c,根據(jù)向量投影的定義寫出運算結(jié)果即可.
解答 解:△ABC中,a=4$\sqrt{2}$,b=5,cosA=-$\frac{3}{5}$,
∴A為鈍角,且sinA=$\frac{4}{5}$,
∴$\frac{a}{sinA}$=$\frac{sinB}$
sinB=$\frac{bsinA}{a}$=$\frac{5×\frac{4}{5}}{4\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
由題知A>B,故B=$\frac{π}{4}$;
∵a2=b2+c2-2bccosA,
∴(4$\sqrt{2}$)2=52+c2-2•5c•(-$\frac{3}{5}$),
解得c=1或c=-7(舍去),
∴向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影為:
|$\overrightarrow{BA}$|cosB=ccos$\frac{π}{4}$=1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$.
故選:B.
點評 本題考查了平面向量的數(shù)量積與正弦、余弦定理的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4$\sqrt{2}$ | C. | 2$\sqrt{5}$+2 | D. | 2$\sqrt{6}$+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {2} | C. | {1,2,5,6} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinA)•g(sinB)>f(sinB)•g(sinA) | B. | f(sinA)•g(sinB)<f(sinB)•g(sinA) | ||
C. | f(cosA)•g(sinB)>f(sinB)•g(cosA) | D. | f(cosA)•g(sinB)<f(sinB)•g(cosA) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com