17.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1、F2,左右頂點分別為A1,A2,P是雙曲線左支上任意一點,則分別以線段PF2,A1A2為直徑的兩圓位置關(guān)系為( 。
A.內(nèi)切B.外切C.相交D.相離

分析 根據(jù)兩圓位置關(guān)系的性質(zhì)求出圓心距與半徑和或與半徑差的關(guān)系,進(jìn)行求解即可.

解答 解:設(shè)以線段PF1、A1A2為直徑的兩圓的半徑
分別為r1、r2,
若P在雙曲線左支,如圖所示,
則|OO2|=$\frac{1}{2}$|PF2|=$\frac{1}{2}$(|PF1|+2a)
=$\frac{1}{2}$|PF1|+a=r1+r2,
即圓心距為半徑之和,兩圓外切.
若P在雙曲線右支,同理求得|OO2|=r1-r2,
故此時,兩圓相內(nèi)切.
故選:A.

點評 本題考查圓與圓的位置關(guān)系及其判定,雙曲線的定義和簡單性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)點P為雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是左右焦點,I是△PF1F2的內(nèi)心,若△IPF1,△IPF2,△IF1F2的面積S1,S2,S3滿足2(S1-S2)=S3,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α的終邊經(jīng)過一點P(5a,-12a)(a>0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x+$\frac{{a}^{2}}{2}$.
(1)若f′(2)=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若f(x)有一個零點,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),若存在圓心在雙曲線的一條慚近線上且與另一條慚近線及x軸都相切的圓,則雙曲線的慚近線方程是y=$±\sqrt{3}$x,離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確的個數(shù)是命題( 。
①命題“若cosx=cosy,則x=y”的逆否命題是真命題;
②命題“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;
③若命題p為真,命題?q為真,則命題p且q為真.
④命題“若x=3,則x2-2x-3=0”的否命題是“x≠3,則x2-2x-3≠0”
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列敘述中正確的是( 。
A.命題“?x∈R,x+3>0”的否定是“?x∈R,x+3<0”
B.命題“若α=$\frac{π}{3}$,則cosα=$\frac{1}{2}$”的否命題是“若α=$\frac{π}{3}$,則cosα≠$\frac{1}{2}$”
C.在區(qū)間[-1,1]上隨機取一個數(shù)x,則事件“2x≤$\sqrt{2}$”發(fā)生的概率為$\frac{1}{4}$
D.“命題p∧q為真”是“命題p∨q為真”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對于復(fù)數(shù)z1,z2,如果復(fù)數(shù)(z1-i)•z2=1,那么稱z1是z2的“錯位共軛復(fù)數(shù)”,則復(fù)數(shù)$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的“錯位共軛復(fù)數(shù)”z=(  )
A.$\frac{\sqrt{3}}{2}$+$\frac{3}{2}$iB.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$iC.$\frac{\sqrt{3}}{6}$+$\frac{1}{2}$iD.-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡$\frac{sin(α-3π)cos(2π-α)sin(-α+\frac{3π}{2})}{cos(-π-α)sin(-π-α)}$.

查看答案和解析>>

同步練習(xí)冊答案