10.已知某產(chǎn)品質(zhì)量指標(biāo)服從正態(tài)分布 N(200,25),某用戶購(gòu)買了 10000 件這種產(chǎn)品,記 X 表示 10000 件這種產(chǎn)品中質(zhì)量指標(biāo)值大于 210 的產(chǎn)品件數(shù),則隨機(jī)變量 X 的數(shù)學(xué)期望 EX=(  )
附:(隨機(jī)變量ξ服從正態(tài)分布N(μ,δ2),則P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%)
A.6826B.3174C.228D.456

分析 某產(chǎn)品質(zhì)量指標(biāo)服從正態(tài)分布 N(200,25),可得μ=200,δ=5,利用P(200-2×5<ξ<200+2×5)=95.44%,即可求出隨機(jī)變量 X 的數(shù)學(xué)期望.

解答 解:∵某產(chǎn)品質(zhì)量指標(biāo)服從正態(tài)分布 N(200,25),
∴μ=200,δ=5,
∴P(200-2×5<ξ<200+2×5)=95.44%,
∴P(ξ>210)=0.0228,
∴EX=0.0228×10000=228,
故選:C.

點(diǎn)評(píng) 本題考查正態(tài)分布,考查3δ原則,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)數(shù)集A={-1,x1,x2,…xn},其中0<x1<x2<…<xn,n≥2,向量集B={$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈A,y∈A}.若?$\overrightarrow{{a}_{1}}$∈B,?$\overrightarrow{{a}_{2}}$∈B使得$\overrightarrow{{a}_{1}}$•$\overrightarrow{{a}_{2}}$=0,則稱A具有性質(zhì)P.
(1)若a>1,數(shù)集A={-1,1,a},求證:數(shù)集A具有性質(zhì)P;
(2)若b>$\sqrt{2}$,數(shù)集A={-1,1,$\sqrt{2}$,b}具有性質(zhì)P,求b的值;
(3)若數(shù)集A={-1,x1,x2,…xn}(其中0<x1<x2<…<xn,n≥2)具有性質(zhì)P,x1=1,x2=q(q為常數(shù),q>1),求數(shù)列{xk}的通項(xiàng)公式xk(k∈N*,k≤n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知橢圓C1:$\frac{x^2}{m+1}$+$\frac{y^2}{3-n}$=1與雙曲線C2:$\frac{x^2}{m}$-$\frac{y^2}{-n}$=1有相同的焦點(diǎn),則雙曲線C2的一條斜率為正的漸近線的傾斜角的取值范圍為(  )
A.(45°,90°)B.(45°,90°]C.(0,45°)D.(45°,60°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知F1、F2是一對(duì)相關(guān)曲線的焦點(diǎn),P是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)∠F1PF2=30°時(shí),這一對(duì)相關(guān)曲線中橢圓的離心率是( 。
A.7-4$\sqrt{3}$B.2-$\sqrt{3}$C.$\sqrt{3}$-1D.4-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85.
(Ⅰ) 計(jì)算甲班7位學(xué)生成績(jī)的方差s2; 
(Ⅱ)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲班至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線x2=2py (p>0),過(guò)點(diǎn)(0,4)作直線l交拋物線于A,B兩點(diǎn),且以AB為直徑的圓過(guò)原點(diǎn)O.
(Ⅰ)求拋物線方程;
(Ⅱ)若△MNP的三個(gè)頂點(diǎn)都在拋物線x2=2py上,且以拋物線的焦點(diǎn)為重心,求△MNP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在平面直角坐標(biāo)系xOy中,過(guò)定點(diǎn)Q(1,1)的直線與曲線y=$\frac{x}{x-1}$交于M,N兩點(diǎn),則$\overrightarrow{OQ}$•$\overrightarrow{OM}$-$\overrightarrow{OQ}$•$\overrightarrow{NO}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列說(shuō)法正確的是( 。
A.離散型隨機(jī)變量X~B(4,0.1),則D(X)=0.4
B.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,平均值與方差均沒(méi)有變化
C.采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60
D.某糖果廠用自動(dòng)打包機(jī)打包,每包的重量X(kg)服從正態(tài)分布N(100,1.44),從該糖廠進(jìn)貨10000包,則重量少于96.4kg一般不超過(guò)15包

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=x2+ax+b對(duì)任意實(shí)數(shù)x都有f(2+x)=f(2-x),那么必有( 。
A.f(-1)<f(2)<f(4)B.f(2)<f(-1)<f(4)C.f(2)<f(4)<f(-1)D.f(4)<f(2)<f(-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案