已知在△ABC中,若∠C=90°,則三邊的比
a+b
c
=(  )
A、
2
cos
A+B
2
B、
2
cos
A-B
2
C、
2
sin
A+B
2
D、
2
sin
A-B
2
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:由正弦定理以及和差化積公式可得
a+b
c
=
sinA+sinB
sinC
=sinA+sinB=2sin
A+B
2
cos
A-B
2
,代值化簡(jiǎn)可得.
解答: 解:∵在△ABC中,∠C=90°,
∴由正弦定理可得
a+b
c
=
sinA+sinB
sinC
=sinA+sinB,
由和差化積公式可得sinA+sinB=2sin
A+B
2
cos
A-B
2

=2sin45°cos
A-B
2
=
2
cos
A-B
2

故選:B
點(diǎn)評(píng):本題考查正弦定理以及和差化積公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中設(shè)銳角α的始邊與x軸的非負(fù)半軸重合,終邊與單位圓交于點(diǎn)P(x1,y1),將射線(xiàn)OP繞坐標(biāo)原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)
π
2
后與單位圓交于點(diǎn)Q(x2,y2)記f(α)=y1+y2
(1)求函數(shù)f(α)的值域;
(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,若f(C)=
2
,且a=
2
,c=1,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(ax-1)-lg(x-1)在[10,﹢∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
4
x2+2sin2
2
-
x
2
)-1,f′(x)為f(x)的導(dǎo)函數(shù),則f′(x)的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
-x2+4x+5
的單調(diào)增區(qū)間是( 。
A、(-∞,2]
B、[-1,2]
C、[2,+∞]
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求到點(diǎn)(0,2),且過(guò)點(diǎn)(2,1)距離為2的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|
x
3
 
+1|,(|x|≥1)
2sin
π
2
x,(|x|<1)
,則函數(shù)y=f|f(x)|-1的零點(diǎn)個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解食品廠(chǎng)生產(chǎn)的一種食品中添加劑的含量,食品監(jiān)管部門(mén)隨機(jī)抽取了一個(gè)批次的20袋樣品進(jìn)行檢驗(yàn),獲得以下頻率分布表和頻率分布直方圖:
添加劑(單位克)頻數(shù)
[90,94)2
[94,98)a
[98,102)B
[102,106)3
[106,110)1
合計(jì)20
(Ⅰ)求頻率分布表中a和b的值,并補(bǔ)充完整頻率分布直方圖;
(Ⅱ)規(guī)定每袋該食品中添加劑的含量達(dá)到或超過(guò)102克即為超標(biāo),從質(zhì)量在[98,106)范圍內(nèi)的樣品中隨機(jī)抽兩袋,求至少有一袋不超標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿(mǎn)足約束條件
x≥1
x+y-4≤0
x-y≤0
,則
y
x
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案