9.如果橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的弦被點(1,1)平分,則這條弦所在的直線方程是( 。
A.x+2y-3=0B.2x-y-3=0C.2x+y-3=0D.x+2y+3=0

分析 由題意可知:將E,F(xiàn)代入橢圓方程,由中點坐標(biāo)公式$\left\{\begin{array}{l}{\frac{{x}_{1}+{x}_{2}}{2}=1}\\{\frac{{y}_{1}+{y}_{2}}{2}=1}\end{array}\right.$,做差求得直線EF的斜率公式,由直線的點斜式方程,即可求得條弦所在的直線方程.

解答 解:設(shè)過點A(1,1)的直線與橢圓相交于兩點,E(x1,y1),F(xiàn)(x2,y2),
由中點坐標(biāo)公式可知:$\left\{\begin{array}{l}{\frac{{x}_{1}+{x}_{2}}{2}=1}\\{\frac{{y}_{1}+{y}_{2}}{2}=1}\end{array}\right.$,
則$\left\{\begin{array}{l}{\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{2}=1}\\{\frac{{x}_{2}^{2}}{4}+\frac{{y}_{2}^{2}}{2}=1}\end{array}\right.$,兩式相減得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{2}$=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,
∴直線EF的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,
∴直線EF的方程為:y-1=-$\frac{1}{2}$(x-1),整理得:2y+x-3=0,
故選A.

點評 本題考查直線的點斜式方程,中點坐標(biāo)公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時,xf′(x)-f(x)>0,則使得函數(shù)f(x)>0成立的x取值范圍是(  )
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x1滿足3x+3x-1=7,x2滿足3x+3log3(x-2)=7,則x1+x2=$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}是遞增的等比數(shù)列,前n項和為Sn,已知a3=8,S3=14.
(Ⅰ)求數(shù)列{an}的通項公式;
(II)若數(shù)列{bn},滿足anbn=log2an,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知圓C的方程(x-1)2+y2=1,P是橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1上一點,過P作圓的兩條切線,切點為A、B,則$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍為( 。
A.$[2\sqrt{2}-3,\frac{56}{9}]$B.$[\frac{56}{9},+∞)$C.$(-∞,2\sqrt{2}-3]$D.$(-∞,2\sqrt{2}-3]∪[\frac{56}{9},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知M={(x,y)|y=x2+1,x∈R},N={(x,y)|y=x+1,x∈R},則M∩N={(0,1),(1,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足下列條件的有兩個的是( 。
A.$a=1,b=\sqrt{2},A={30°}$B.$b=\sqrt{2},c=2,B={45°}$C.a=1,b=2,c=3D.a=3,b=2,A=60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)[x-1+(y+1)i](2+i)=0,(x,y∈R),則x+y=0 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{a{e^x}}}{x}$+x.
(1)若函數(shù)f(x)的圖象在(1,f(1))處的切線經(jīng)過點(0,-1),求a的值;
(2)是否存在負(fù)整數(shù)a,使函數(shù)f(x)的極大值為正值?若存在,求出所有負(fù)整數(shù)a的值;若不存在,請說明理由;
(2)設(shè)a>0,求證:函數(shù)f(x)既有極大值,又有極小值.

查看答案和解析>>

同步練習(xí)冊答案