19.已知向量$\vec a$,$\vec b$滿足|${\vec a}$|=1,|${\vec b}$|=4,且$\vec a$•$\vec b$=2$\sqrt{3}$,則$\vec a$與$\vec b$的夾角為( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 根據(jù)數(shù)量積的計算公式便可求出$cos<\overrightarrow{a},\overrightarrow>$的值,進而便可得出$\overrightarrow{a}$與$\overrightarrow$的夾角.

解答 解:根據(jù)條件:
$\overrightarrow{a}•\overrightarrow=|\overrightarrow{a}||\overrightarrow|cos<\overrightarrow{a},\overrightarrow>$
=$1•4cos<\overrightarrow{a},\overrightarrow>$
=$2\sqrt{3}$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{\sqrt{3}}{2}$;
∴$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{6}$.
故選:C.

點評 考查向量數(shù)量積的計算公式,以及向量夾角的范圍,已知三角函數(shù)值求角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調(diào)遞減,若方程f(x)=m在[-2,10]上有6個實根x1,x2,x3,x4,x5,x6,則x1+x2+x3+x4+x5+x6=( 。
A.6B.12C.20D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設集合A={x|2x≤4},集合B={x|f(x)=lg$\frac{1}{\sqrt{x-1}}$},則 A∩B等于( 。
A.(1,2)B.(1,2]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知a,b是正實數(shù),求證:$\frac{a}{^{2}}$+$\frac{3b}{{a}^{2}}$≥$\frac{5}{a}$-$\frac{1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,則異面直線PB與AC所成的角是60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a=4${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{4}}$$\frac{1}{3}$,c=log3$\frac{1}{4}$,則( 。
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.滿足{a,b,c}⊆B⊆{a,b,c,d,e,f}的集合B的個數(shù)是( 。
A.4B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則∠ABC=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f[f(x)]≥-2,則x的取值范圍是[-2,1]或$[\root{4}{2},+∞)$.

查看答案和解析>>

同步練習冊答案