5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{sinax}{x},x<0}\\{b,x=0}\\{xcos\frac{1}{x}+2,x>0}\end{array}\right.$在定義域內(nèi)連續(xù),則a+b=( 。
A.4B.2C.1D.0

分析 根據(jù)函數(shù)的單調(diào)性取極限值,求出a,b的值,從而求出a+b即可.

解答 解:由題意得,f(0)=b,
且f(x)在(-∞,0)上連續(xù),在(0,+∞)上連續(xù),
而$\underset{lim}{x→0}$(xcos$\frac{1}{x}$+2)=2,
故b=2,
$\underset{lim}{x→0}$($\frac{sinax}{x}$)=$\underset{lim}{x→0}$(acosax)=a=2,
故a+b=4,
故選:A.

點(diǎn)評(píng) 本題考查了極限的求法及函數(shù)的連續(xù)性的判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+2a{x^2}+2$在區(qū)間[1,4]上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的最小值是( 。
A.-1B.-4C.$-\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AB=AP,E為棱PD的中點(diǎn)
(Ⅰ)求直線AE與平面PBD所成角的正弦值;
(Ⅱ)若F為AB的中點(diǎn),棱PC上是否存在一點(diǎn)M,使得FM⊥AC,若存在,求出$\frac{PM}{MC}$的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知an=$\frac{{n-\sqrt{96}}}{{n-\sqrt{97}}}$(n∈N*),則在數(shù)列{an}的前30項(xiàng)中最大項(xiàng)和最小項(xiàng)分別是( 。
A.a1,a30B.a1,a9C.a10,a9D.a10,a30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=3,AD=4,AC=2$\sqrt{3}$,∠ADC=60°,E為線段PC上一點(diǎn),且$\overrightarrow{PE}$=λ$\overrightarrow{PC}$.
(Ⅰ)求證:CD⊥AE; 
(Ⅱ)若平面PAB⊥平面PAD,直線AE與平面PBC所成的角的正弦值為$\frac{{3\sqrt{3}}}{8}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知復(fù)數(shù)z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是純虛數(shù)時(shí),求a的值;
(2)若z是虛數(shù),且z的實(shí)部比虛部大時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若c=2,∠C=$\frac{π}{3}$,且sinC+sin(B-A)-2sin2A=0,下列命題正確的是②③④(寫出所有正確命題的編號(hào)).
①b=2a;
②△ABC的周長為2+2$\sqrt{3}$;
③△ABC的面積為$\frac{{2\sqrt{3}}}{3}$;
④△ABC的外接圓半徑為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=x3-$\frac{1}{2}$x2-2x+5.
(1)求f(x)的單調(diào)區(qū)間;
(2)過(0,a)可作y=f(x)的三條切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)數(shù)列{an}的通項(xiàng)公式an=2n,數(shù)列{bn}的通項(xiàng)公式bn=2n-1,則數(shù)列{an+bn}的前n項(xiàng)和Sn=n2+2n+1-2.

查看答案和解析>>

同步練習(xí)冊答案