已知橢圓短軸的一個(gè)端點(diǎn)到一個(gè)焦點(diǎn)的距離為5,焦點(diǎn)到橢圓中心的距離為3,則橢圓的標(biāo)準(zhǔn)方程為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:橢圓焦點(diǎn)到橢圓中心的距離為3,即有c=3,橢圓短軸的一個(gè)端點(diǎn)到一個(gè)焦點(diǎn)的距離為5,則有a=
b2+c2
=5,即可得到b,進(jìn)而得到橢圓方程.
解答: 解:橢圓焦點(diǎn)到橢圓中心的距離為3,
即有c=3,
橢圓短軸的一個(gè)端點(diǎn)到一個(gè)焦點(diǎn)的距離為5,
則有a=
b2+c2
=5,
解得,b=4,
則橢圓方程為
x2
25
+
y2
16
=1
y2
25
+
x2
16
=1

故答案為:
x2
25
+
y2
16
=1
y2
25
+
x2
16
=1
點(diǎn)評(píng):本題考查橢圓的方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,二面角B-PA-C的大小等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

符號(hào)函數(shù)為sgnx=
1(x>0)
0(x=0)
-1(x<0)
,則函數(shù)f(x)=sgn(lnx)-(lnx)2零點(diǎn)個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(3,5,-7),B(-2,4,-6),則線段AB在坐標(biāo)平面yOz上的射影的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某由圓柱切割獲得的幾何體的三視圖如圖所示,其中俯視圖是中心角為120°的扇形,則該幾何體的體積為(  )
A、16π
B、
16
3
π
C、12π
D、36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,已知A(1,-2,3),B(2,1,-1),若直線AB交平面xOz于點(diǎn)C,則點(diǎn)C的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

期中考試后,某校高三(9)班對(duì)全班65名學(xué)生的成績(jī)進(jìn)行分析,得到數(shù)學(xué)成績(jī)y對(duì)總成績(jī)x的回歸直線方程為y=6+0.4x.由此可以估計(jì):若兩個(gè)同學(xué)的總成績(jī)相差50分,則他們的數(shù)學(xué)成績(jī)大約相差( 。┓郑
A、20B、26
C、110D、125

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的一條漸近線方程是3x+2y=0,一個(gè)焦點(diǎn)是(
13
,0),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-4y-12=0,點(diǎn)P(4,0),直線l經(jīng)過(guò)點(diǎn)P
(1)若直線l與圓C相切,求直線l的方程
(2)若直線l與圓C相交于A,B兩點(diǎn),且|AB|=4
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案