某由圓柱切割獲得的幾何體的三視圖如圖所示,其中俯視圖是中心角為120°的扇形,則該幾何體的體積為( 。
A、16π
B、
16
3
π
C、12π
D、36π
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖.
解答: 解:由三視圖可知,
該幾何體的體積為圓柱體積的
1
3
;
設(shè)圓柱的底面圓的半徑為r,則r+
1
2
r=3;
解得r=2;
故圓柱的體積V=4π×4=16π;
故該幾何體的體積為
16
3
π;
故選B.
點評:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,本題考查了學(xué)生的空間想象力,識圖能力及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-log2x(0<x≤1)
x-1
(x>1)
,若區(qū)間(0,4]內(nèi)隨機選取一個實數(shù)x0,則所選取的實數(shù)x0滿足f(x0)≤1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且c=
6
+
2
,C=30°,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的各棱長都為a,P為A1B上的點.
(1)試確定
A1P
PB
的值,使得PC⊥AB;
(2在直線A1B上找一點P使二面角P-AC-B的大小為60°,求
A1P
PB
的值;
(3)在(2)條件下,求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三個頂點分別是A(-5,0),B(3,-3),C(0,2)
(1)求△ABC的面積,
(2)若直線l過點C且與A、B的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓短軸的一個端點到一個焦點的距離為5,焦點到橢圓中心的距離為3,則橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(1,0,4)在空間直角坐標(biāo)系中的位置是( 。
A、y軸上
B、xOy平面上
C、xOz平面上
D、yOz平面上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點,左、右頂點A1、A2在x軸上,離心率為e1=
21
3
的雙曲線C1經(jīng)過點P(6,6).
(1)求雙曲線C1的標(biāo)準(zhǔn)方程;
(2)若橢圓C2以A1、A2為左、右焦點,離心率為e2,且e1、e2為方程x2+mx+
21
5
=0的兩實根,求橢圓C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:函數(shù)f(x)=lg(ax2-4x+a)的定義域為R;q:設(shè)
a
=(2x2+x  ,-1),
b
=(1  , ax+2)
,不等式
a
b
>0
對?x∈(-∞,-1)上恒成立,如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案