分析 根據(jù)二次函數(shù)的性質(zhì),利用換元法轉(zhuǎn)化為二次函數(shù)配方法求解值域即可.
解答 解:函數(shù)y=3-$\sqrt{-{x^2}+6x-5}$;
令t=-x2+6x-5=-(x-3)2+4,t≥0.
由二次函數(shù)的性質(zhì)可知.當(dāng)x=3時,t取得最大值為4.
∴0≤$\sqrt{t}$≤2,
∴1≤3-$\sqrt{t}$≤3.
即y=3-$\sqrt{-{x^2}+6x-5}$的值域為[1,3]
故答案為[1,3].
點評 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{18}{5}$ | B. | 5 | C. | 9 | D. | $\frac{9}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com