15.已知函數(shù)f(x)的部分圖象如圖所示,向圖中的矩形區(qū)域隨機(jī)投出200粒豆子,記下落入陰影區(qū)域的豆子數(shù),通過(guò)100次這樣的試驗(yàn),算得落入陰影區(qū)域的豆子的平均數(shù)為66,由此可估計(jì)$\int_0^2{f(x)dx}$的值約為( 。
A.$\frac{99}{25}$B.$\frac{99}{50}$C.$\frac{3}{10}$D.$\frac{3}{5}$

分析 根據(jù)幾何概型的概率計(jì)算公式得出陰影部分的面積,再根據(jù)定積分的幾何意義得出答案.

解答 解:矩形部分的面積為S矩形=2×3=6,
由題意可知:$\frac{{S}_{陰影}}{{S}_{矩形}}$=$\frac{66}{200}$=$\frac{33}{100}$,
∴S陰影=$\frac{33}{100}×6$=$\frac{99}{50}$.
∴$\int_0^2{f(x)dx}$=S陰影=$\frac{99}{50}$.
故選B.

點(diǎn)評(píng) 本題考查了幾何概型的概率計(jì)算,定積分的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}+\overrightarrow$)⊥$\overrightarrow{a}$,則|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.教育部考試中心在對(duì)高考試卷難度與區(qū)分性能分析的研究中,在2007至2016十年間對(duì)每年理科數(shù)學(xué)的高考試卷隨機(jī)抽取了若干樣本,統(tǒng)計(jì)得到解答題得分率x以及整卷得分率y的數(shù)據(jù),如下表:
 年份 2007 2008 20092010  2011 20122013  20142015  2016
 解答題得分率(x) 0.39 0.30 0.25 0.28 0.55 0.33 0.36 0.40 0.40 0.42
 整卷得分率(y) 0.50 0.43 0.41 0.44 0.59 0.47 0.52 0.56 0.54 0.57
(1)利用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;(精確到0.01)
(2)若以函數(shù)y=0.85$\sqrt{x}$-0.01來(lái)擬合y與x之間的關(guān)系,計(jì)算得到相關(guān)指數(shù)R2=0.87,對(duì)比(1)中模型,哪一個(gè)模型擬合效果更好?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
參考數(shù)據(jù):$\sum_{i=1}^{10}{x}_{i}$≈3.7,$\sum_{i=1}^{10}{y}_{i}$≈5,$\sum_{i=1}^{10}{x}_{i}{y}_{i}$≈1.89,$\sum_{i=1}^{10}{{x}_{i}}^{2}$≈1.429,$\sum_{i=1}^{10}({y}_{i}-\widehat{{y}_{i}})^{2}$≈0.006,$\sum_{i=1}^{10}$(yi-$\overline{y}$)2≈0.036
其中${\widehat{y}}_{i}$表示(1)中擬合直線(xiàn)對(duì)應(yīng)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某同學(xué)解關(guān)于x的不等式x2-7ax+3a<0(a>0)時(shí),得到x的取值區(qū)間為(-2,3),若這個(gè)區(qū)間的端點(diǎn)有一個(gè)是錯(cuò)誤的,那么正確的x的取值區(qū)間應(yīng)是($\frac{1}{2}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知△ABC的面積是S△ABC,若角A、B、C所對(duì)的邊為a,b,c,且有c2+b2-a2=4S△ABC
(1)求角A的大小;
(2)若a=$\sqrt{2}$,D為BC邊上的點(diǎn),且DC=$\sqrt{3}$BD,求線(xiàn)段AD的長(zhǎng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿(mǎn)足a1=0,且$\frac{{a}_{1}}{1}+\frac{{a}_{2}}{2}+…+\frac{{a}_{n-1}}{n-1}{=a}_{n}-2$(n≥2).則數(shù)列{an}的通項(xiàng)公式為${a}_{n}=\left\{\begin{array}{l}{0,n=1}\\{n,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{11}$.
優(yōu)秀非優(yōu)秀合計(jì)
甲班10
乙班30
合計(jì)110
(I)請(qǐng)完成上面的列聯(lián)表;
(II)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(III)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人;把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到9號(hào)或10號(hào)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=2sin3x的值域?yàn)閇-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知自然數(shù)按如下規(guī)律排數(shù)對(duì):(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),(0,4),(1,3),(2,2),(3,1),(4,0),…,則第60個(gè)數(shù)對(duì)是(  )
A.(3,7)B.(4,6)C.(5,5)D.(6,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案