18.計(jì)算:
(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}}$+0.1-2+(2$\frac{10}{27}$)${\;}^{\frac{1}{3}}}$-3π0
(2)2log510+log50.25.

分析 根據(jù)對數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}}$+0.1-2+(2$\frac{10}{27}$)${\;}^{\frac{1}{3}}}$-3π0=($\frac{5}{3}$)${\;}^{2×\frac{1}{2}}$+100+$(\frac{4}{3})^{3×\frac{1}{3}}$-3=$\frac{5}{3}$+100+$\frac{4}{3}$-3=100,
(2)2log510+log50.25=log5100+log50.25=log525=2

點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx.
(1)求g(x)=f(x)-(x-1)的最大值;
(2)若?x>0,f(x)<ax≤x2+1成立,求a的取值范圍;
(3)若m>n>0,試比較$\frac{f(m)-f(n)}{m-n}$與$\frac{2n}{{{m^2}+{n^2}}}$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為2.對任意的n∈N*,bn是an和an+1的等比中項(xiàng).設(shè)cn=b2n+1-bn2,n∈N*
(Ⅰ)求證:數(shù)列{cn}是等差數(shù)列.
(Ⅱ)若c1=16,求數(shù)列an的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)f(n)=logn+1(n+2)(n∈N+),現(xiàn)把滿足乘積f(1)f(2)…f(n)為整數(shù)的n叫做“賀數(shù)”,則在區(qū)間(1,2015)內(nèi)所有“賀數(shù)”的個(gè)數(shù)是( 。
A.9B.10C.29D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對于n∈N*,將n表示n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,當(dāng)i=0時(shí),ai=1,當(dāng)1≤i≤k時(shí),ai為0或1.記I(n)為上述表示中ai為0的個(gè)數(shù)(例如1=1×20,4=1×22+0×21+0×20),故I(1)=0,I(4)=2,則
(1)l(8)=3;
(2)I(1)+I(2)+I(3)+…+I(2048)=9228.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-x(x≥0)}\\{x+1(x<0)}\end{array}}$,則f(2)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,空間四邊形 O A BC中,$\overrightarrow{{O}{A}}$=$\vec a$,$\overrightarrow{{O}{B}}$=$\vec b$,$\overrightarrow{{O}C}$=$\vec c$,點(diǎn) M在 O A上,且$\overrightarrow{{O}{M}}$=$\frac{2}{3}$$\overrightarrow{{O}{A}}$,點(diǎn) N為 BC中點(diǎn),則$\overrightarrow{{M}{N}}$等于$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$.(用向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.垂直于直線3x-4y-7=0,且與兩坐標(biāo)軸所構(gòu)成的三角形的周長為10的直線l的方程為4x+3y±10=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(log2x)=x 則f($\frac{1}{2}$)=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案