18.已知函數(shù)f(x)=2x+log3x的零點(diǎn)在區(qū)間(k,k+1)上,則整數(shù)k的值為0.

分析 確定函數(shù)的定義域?yàn)椋?,+∞)與單調(diào)性,再利用零點(diǎn)存在定理,即可得到結(jié)論.

解答 解:函數(shù)的定義域?yàn)椋?,+∞),易知函數(shù)在(0,+∞)上單調(diào)遞增,
∵f(1)=2+0>0,
當(dāng)x=0時,20=1,當(dāng)→0+時,log3x→-∞,
∴f(0)<0
∴函數(shù)f(x)=2x+log3x的零點(diǎn)一定在區(qū)間(0,1),
∴k=0,
故答案為:0

點(diǎn)評 本題考查函數(shù)的單調(diào)性,考查零點(diǎn)存在定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ax-(m-2)a-x   (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求m的值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中各項(xiàng)都大于1,前n項(xiàng)和為Sn,且滿足an2+3an=6Sn-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)求使得Tn<$\frac{m}{36}$對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù),又在(-∞,0)上單調(diào)遞減的是(  )
A.$y=\frac{1}{x}$B.y=e-xC.y=1-x2D.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若-1<a<0,則不等式$\frac{2}{a}$-$\frac{1}{1+a}$的最大值為-3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求解下列各式的值:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+(-2017)0+(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$;
(2)$\sqrt{l{g}^{2}\frac{1}{3}-4lg3+4}$+lg6-lg0.02.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于x的不等式x2+bx+a>0的解集為(-∞,1)∪(5,+∞),則實(shí)數(shù)a+b=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點(diǎn),PB=BC,PA=AB=1.
(1)求證:PC⊥平面BDE;
(2)求直線BE與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$夾角的度數(shù)為120°.

查看答案和解析>>

同步練習(xí)冊答案