13.已知$\overrightarrow a=(-2,-1),\overrightarrow b=(λ,1)$,則$\overrightarrow a與\overrightarrow b$夾角θ為鈍角時(shí),λ取值范圍為(  )
A.$λ>-\frac{1}{2}$B.$λ<-\frac{1}{2}$C.λ>-$\frac{1}{2}$且λ≠2D.λ<-$\frac{1}{2}$且λ≠2

分析 根據(jù)平面向量數(shù)量積的定義列出不等式,再結(jié)合題意即可求出λ的取值范圍.

解答 解:∵$\overrightarrow a=(-2,-1),\overrightarrow b=(λ,1)$,
∴$\overrightarrow a與\overrightarrow b$夾角θ為鈍角時(shí),
$\overrightarrow{a}$•$\overrightarrow$=-2λ-1<0,
解得λ>-$\frac{1}{2}$,
又$\overrightarrow{a}$與$\overrightarrow$不共線,即λ≠2,
∴λ的取值范圍是:λ>-$\frac{1}{2}$且λ≠2.
故選:C.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列{an}中,a1=4,an+1=an+2n,則$\frac{a_n}{n}$的最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=cos(2x+φ)(0<φ<π),若f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,則f(x)的單調(diào)遞減區(qū)間是( 。
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)?shù)列{an}中,a1=2,an+1=2an-1,則a5=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.拋物線y=x2上的點(diǎn)到直線2x-y-11=0距離的最小值是( 。
A.$\frac{{10\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$\frac{{12\sqrt{5}}}{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為($\frac{π}{2}$,$\sqrt{2}$),
由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)($\frac{3}{2}$π,0),φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)求這條曲線的函數(shù)解析式;
(2)當(dāng)x∈[0,π]時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)化簡(jiǎn)$\frac{{\sqrt{1-2sin{{70}^0}cos{{70}^0}}}}{{cos{{70}^0}-\sqrt{1-{{cos}^2}{{70}^0}}}}$;
(2)證明:$\frac{tanxsinx}{tanx-sinx}=\frac{1+cosx}{sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知雙曲線C:2x2-y2=2,過(guò)點(diǎn)Q(1,1)能否作一條直線l,與雙曲線交于A、B兩點(diǎn),且點(diǎn)Q為線段 AB的中點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x-1045
f(x)1221
①函數(shù)f(x)的值域?yàn)閇1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).其中真命題的個(gè)數(shù)是(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案