1.?dāng)?shù)列{an}中,a1=2,an+1=2an-1,則a5=17.

分析 由數(shù)列遞推式可得數(shù)列{an-1}是以1為首項(xiàng),以2為公比的等比數(shù)列,求其通項(xiàng)公式后可得an,則a5可求.

解答 解:由an+1=2an-1,得an+1-1=2(an-1),
又a1-1=2-1=1,
∴數(shù)列{an-1}是以1為首項(xiàng),以2為公比的等比數(shù)列,
則${a}_{n}-1={2}^{n-1}$,
∴${a}_{5}={2}^{4}+1=17$.
故答案為:17.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.等差數(shù)列{an}中,若a1+a2=5,a3+a4=7,則a5+a6=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.解不等式|x+2|+|x-2|<x+7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a8≠0且S15-λa8=0,則實(shí)數(shù)λ=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$f(x)={cos^4}x+2\sqrt{3}sinxcosx-{sin^4}x$.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)增區(qū)間;
(3)若$x∈[{0,\frac{π}{2}}]$,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)$f(x)=\left\{\begin{array}{l}-cosπx,x>0\\ f(x+1)+1,x≤0\end{array}\right.$,則$f(-\frac{4}{3})$的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow a=(-2,-1),\overrightarrow b=(λ,1)$,則$\overrightarrow a與\overrightarrow b$夾角θ為鈍角時(shí),λ取值范圍為(  )
A.$λ>-\frac{1}{2}$B.$λ<-\frac{1}{2}$C.λ>-$\frac{1}{2}$且λ≠2D.λ<-$\frac{1}{2}$且λ≠2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線$C:\left\{\begin{array}{l}x=4cosφ\\ y=3sinφ\end{array}\right.$(φ為參數(shù)).
(Ⅰ)將C的參數(shù)方程化為普通方程;
(Ⅱ)若點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)=x2-2x-4lnx,則函數(shù)f(x)單調(diào)遞增區(qū)間是[2,+∞).

查看答案和解析>>

同步練習(xí)冊答案