【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如表:
質(zhì)量指標(biāo)值m | 25≤m<35 | 15≤m<25或35≤m<45 | 0<m<15或45≤m≤65 |
等級(jí) | 一等品 | 二等品 | 三等品 |
某企業(yè)從生產(chǎn)的這種產(chǎn)品中抽取100件產(chǎn)品作為樣本,檢測(cè)其質(zhì)量指標(biāo)值,得到如圖所示的頻率分布直方圖.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表):
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品82%”的規(guī)定?
(2)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(31,122),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升或降低多少?
(3)若企業(yè)每件一等品售價(jià)180元,每件二等品售價(jià)150元,每件三等品售價(jià)120元,以樣本中的頻率代替相應(yīng)概率,現(xiàn)有一名顧客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為X(單位:元),求X的分布列及數(shù)學(xué)期望.
【答案】(1)不能認(rèn)為這種產(chǎn)品符合規(guī)定;(2)降低了1.8;(3)見解析
【解析】
(1)根據(jù)抽樣調(diào)查數(shù)據(jù),可求得樣本中一等品和二等品共有件,進(jìn)而可得到結(jié)論;
(2)由頻率分布直方圖,利用公式求得活動(dòng)前樣本的均值為,即可作出比較,得到結(jié)論;
(3)由樣品估計(jì)總體,可得一等品的概率為,二等品的概率為,三等品的概率為,得到隨機(jī)變量X的所有可能取值,利用概率的乘法公式,求得取每個(gè)值的概率,得到分布列,利用公式即可求得數(shù)學(xué)期望.
(1)根據(jù)抽樣調(diào)查數(shù)據(jù)知,樣本中一等品和二等品共有:(0.5+0.18+0.12)×100=80(件)
在樣本中所占比例為80%,因此不能認(rèn)為這種產(chǎn)品符合規(guī)定.
(2)由頻率分布直方圖知,活動(dòng)前樣本的均值為0.02×10+0.18×20+0.50×30+0.12×40+0.16×50+0.02×60=32.8,
又由活動(dòng)后的均值為31,所以均值降低了1.8;
(3)由樣品估計(jì)總體知,企業(yè)隨機(jī)抽取一件產(chǎn)品為一等品的概率為,二等品的概率為,
三等品的概率為,隨機(jī)變量X的所有可能取值為240,270,300,330,360.
,
,
.
所以X的分布列為:
X | 240 | 270 | 300 | 330 | 360 |
P(X) |
隨機(jī)變量X的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有很多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一,給出下列四個(gè)結(jié)論,其中正確的選項(xiàng)是( )
A.曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱
B.曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
C.曲線C上任意一點(diǎn)到原點(diǎn)的距離最小值為1
D.曲線C所圍成的區(qū)域的面積小于4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知,為整數(shù),若對(duì)任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若對(duì)任意都恒成立,求證:a的最大值大于8.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)專著《九章算術(shù)》中有一個(gè)“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個(gè)題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放40年來,體育產(chǎn)業(yè)蓬勃發(fā)展反映了“健康中國”理念的普及.下圖是我國2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長率(%).
(Ⅰ)從2007年至2016年這十年中隨機(jī)選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;
(Ⅱ)從2007年至2011年這五年中隨機(jī)選出兩年,求至少有一年體育產(chǎn)業(yè)年增長率超過25%的概率;
(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2.
(1)求證:AC⊥BE;
(2)若點(diǎn)F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點(diǎn)到直線l:2x﹣y﹣1=0的距離為.
(1)求拋物線的方程;
(2)過點(diǎn)P(0,t)(t>0)的直線l與拋物線C交于A,B兩點(diǎn),交x軸于點(diǎn)Q,若拋物線C上總存在點(diǎn)M(異于原點(diǎn)O),使得∠PMQ=∠AMB=90°,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩種棉花中各抽測(cè)了25根棉花的纖維長度(單位: ) 組成一個(gè)樣本,且將纖維長度超過315的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:
(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);
(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;
(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com