3.已知△ABC中,a=1,b=2,C=$\frac{2π}{3}$,則邊c的長(zhǎng)度為$\sqrt{7}$.

分析 直接利用余弦定理,列出方程求解即可.

解答 解:△ABC中,a=1,b=2,C=$\frac{2π}{3}$,則邊c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{1+4+2×1×2×\frac{1}{2}}$=$\sqrt{7}$.
故答案為:$\sqrt{7}$.

點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,三角形的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|1<x<2},B={x|x2≥2},則∁R(A∪B)等于( 。
A.(-$\sqrt{2}$,2)B.[-$\sqrt{2}$,1)C.($\sqrt{2}$,2)D.(-$\sqrt{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,A=$\frac{π}{3}$,BC=3,則AB+AC的長(zhǎng)可表示為( 。
A.4$\sqrt{3}$sin(B+$\frac{π}{3}$)B.6sin(B+$\frac{π}{3}$)C.4$\sqrt{3}$sin(B+$\frac{π}{6}$)D.6sin(B+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個(gè)蔬菜基地,江的另一側(cè)點(diǎn)C處有一個(gè)超市.已知A、B、C中任意兩點(diǎn)間的距離為20千米.超市欲在AB之間建一個(gè)運(yùn)輸中轉(zhuǎn)站D,A,B兩處的蔬菜運(yùn)抵D處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵C處.由于A,B兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從A處出發(fā)的運(yùn)輸費(fèi)為每千米2元,從B處出發(fā)的運(yùn)輸費(fèi)為每千米1元,貨輪的運(yùn)輸費(fèi)為每千米3元. 
(1)設(shè)∠ADC=α,試將運(yùn)輸總費(fèi)用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問(wèn)中轉(zhuǎn)站D建在何處時(shí),運(yùn)輸總費(fèi)用S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.甲、乙、丙三人一起玩“黑白配”游戲:甲、乙、丙三人每次都隨機(jī)出“手心(白)”、“手背(黑)”中的某一個(gè)手勢(shì),當(dāng)其中一個(gè)人出示的手勢(shì)與另外兩人都不一樣時(shí),這個(gè)人勝出;其他情況,不分勝負(fù).則一次游戲中甲勝出的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知fn(x)=$\sum_{k=0}^{n}$C${\;}_{n}^{k}$xk(n∈N*).
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x4項(xiàng)的系數(shù);
(2)證明:C${\;}_{m+1}^{0}$+2C${\;}_{m+2}^{1}$+3C${\;}_{m+3}^{2}$+…+nC${\;}_{m+n}^{n-1}$=[$\frac{(m+2)n+1}{m+3}$]C${\;}_{m+n+1}^{m+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=axex,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x+b.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)-x2-2x,求函數(shù)g(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,是否存在實(shí)數(shù)k,使得對(duì)于任意的x∈(-∞,0),都有g(shù)(x)≤kx恒成立?若存在,求出實(shí)數(shù)k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F(0,$\sqrt{3}$),且橢圓C經(jīng)過(guò)點(diǎn)P($\frac{1}{2}$,$\sqrt{3}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)M(0,1)的斜率不為0的直線與橢圓交于A、B兩點(diǎn),A關(guān)于y軸的對(duì)稱點(diǎn)為A′,求證:A′B恒過(guò)y軸上的一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知拋物線C:y2=16x,焦點(diǎn)為F,直線l:x=-1,點(diǎn)A∈l,線段AF與拋物線C的交點(diǎn)為B,若|FA|=5|FB|,則|FA|=(  )
A.$6\sqrt{2}$B.35C.$4\sqrt{3}$D.40

查看答案和解析>>

同步練習(xí)冊(cè)答案