7.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,已知(a+b+c)(a-b-c)+3bc=0.
(1)求角A的大。
(2)若a=2c cosB,試判斷△ABC的形狀.

分析 (1)將(a+b+c)(a-b-c)+3bc=0化簡(jiǎn),利用余弦定理求出cosA;
(2)使用正弦定理得sinA=2sinCcosB,即sin(B+C)=2sinCcosB,化簡(jiǎn)得sin(B-C)=0,于是B=C.

解答 解:(1)在△ABC中,∵(a+b+c)(a-b-c)+3bc=0,∴a2-(b+c)2+3bc=0,
即b2+c2-a2=bc,∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}=\frac{1}{2}$
∴A=$\frac{π}{3}$.
(2)∵a=2ccosB,∴sinA=2cosBsinC,
∴sin(B+C)=2cosBsinC,
即sinBcosC-cosBinC=0,
∴sin(B-C)=0,
∴B-C=0,即B=C.
又A=$\frac{π}{3}$,故△ABC為正三角形.

點(diǎn)評(píng) 本題考查了正弦定理,余弦定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=ax3+bx+2且f(5)=16,則f(-5)的值為( 。
A.-12B.-18C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出結(jié)果s的值為( 。
A.-$\frac{\sqrt{3}}{2}$-1B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(x2-2x)lnx+ax2+2(a∈R)在點(diǎn)(1,f(1))處的切線與直線x-3y-1=0垂直.
(1)求實(shí)數(shù)a的值;
(2)若g(x)=f(x)+2x2-x-2,且當(dāng)x∈($\frac{1}{{e}^{2}}$,e](e為自然對(duì)數(shù)的底數(shù))時(shí),g(x)≤2m-3e恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若sinαcos(α-β)-cosαsin(α-β)=$\frac{4}{5}$,則sinβ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.向量$\overrightarrow{a}$=(sinθ,2m),$\overrightarrow$=(sinθ,cosθ-1),對(duì)任意θ∈R,f(θ)=$\overrightarrow{a}$•$\overrightarrow$+2<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y∈R+,設(shè)T=$\frac{x+y}{{x}^{2}+{y}^{2}+4}$,則T的最大值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.sin1290°=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)f(x)同時(shí)滿足下列條件:
(1)f(x+1)=f(1-x),
(2)f(x)的最大值15,
(3)f(x)=0的兩根的平方和等于17,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案