分析 (1)a=3時(shí),A={x|-2≤x≤4},B={x|0≤x≤5},由此能求出A∩B.
(2)由A={x|-2≤x≤4},B={x|a-3≤x≤2a-1},且B≠∅,A∪B=A,利用并集性質(zhì)列出不等式組,能求出實(shí)數(shù)a的取值范圍.
解答 解:(1)a=3時(shí),A={x|(x+2)(x-4)≤0}={x|-2≤x≤4},
B={x|a-3≤x≤2a-1}={x|0≤x≤5},
∴A∩B={x|0≤x≤4}.
(2)∵A={x|-2≤x≤4},B={x|a-3≤x≤2a-1},且B≠∅,
A∪B=A,
∴$\left\{\begin{array}{l}{a-3≥-2}\\{2a-1≤4}\\{a-3<2a-1}\end{array}\right.$,解得1$≤a≤\frac{5}{2}$.
∴實(shí)數(shù)a的取值范圍是[1,$\frac{5}{2}$].
點(diǎn)評(píng) 本題考查交集的求法,考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集和交集性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 140π | B. | 150π | C. | 160π | D. | 170π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7≤z≤8 | B. | -7≤z≤10 | C. | 8≤z≤10 | D. | 0≤z≤10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{13}}}{3}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{11}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件 | |
B. | “p∧q為真命題”是“p∨q為真命題”的必要不充分條件 | |
C. | 命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0” | |
D. | 命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com