6.已知f(x)=sin2(x+$\frac{π}{4}$),若a=f(lg 5),b=f(lg$\frac{1}{5}$),則a+b=1.

分析 推導(dǎo)出f(x)=$\frac{1+sin2x}{2}$,由此能求出a+b的值.

解答 解:f(x)=$\frac{1}{2}$[1-cos(2x+$\frac{π}{2}$)]=$\frac{1+sin2x}{2}$,
∴a=$\frac{1}{2}$+$\frac{sin(2lg5)}{2}$,
b=$\frac{1}{2}$+$\frac{sin(2lg5)}{2}$=$\frac{1}{2}$-$\frac{sin(2lg5)}{2}$,
∴a+b=1.
故答案為:1.

點(diǎn)評(píng) 本題考查兩數(shù)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意三角函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在測(cè)量某物理量的過(guò)程中,因儀器和觀察的誤差,使得n次測(cè)量分別得到a1,a2,…an,共n個(gè)數(shù)據(jù),我們規(guī)定所測(cè)量物理量的“最佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最。来艘(guī)定,從a1,a2,…,an推出的a=(  )
A.$\sqrt{{\frac{a_1^2+a_2^2+…+a_n^2}{n}}}$B.$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$
C.$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$D.$\frac{n}{\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求角A的大。
(Ⅲ)若a=7,b=5,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.“x≥1”是“$\frac{2x-1}{x}$≥1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不必要又不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰,機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元,在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了 100臺(tái)這種機(jī)器在三年使用期內(nèi)更 換的易損零件數(shù),得下面柱狀圖:

記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元),n表示購(gòu)機(jī)的同時(shí)購(gòu)買的易損零件數(shù).
若n=19,求y與x的函數(shù)解析式;
(1)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(2)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買19個(gè)易損零件,或每臺(tái)都購(gòu)買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng) 購(gòu)買19個(gè)還是20個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.定義在R上的偶函數(shù)f(x)在(-∞,0]上遞減,f(-$\frac{1}{3}$)=0,則滿足f(log2x)>0的x的取值范圍是x>${2}^{\frac{1}{3}}$或0<x<${2}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將函數(shù)y=f(x)圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,再把所得的圖象沿x軸向右平移$\frac{π}{2}$個(gè)單位,這樣所得的曲線與y=3sinx的圖象相同,則函數(shù)y=f(x)的表達(dá)式是( 。
A.$f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$B.$f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$C.f(x)=-3sinxD.f(x)=3cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知命題p:方程4x2-4(m-2)x+1=0有兩個(gè)不相等的負(fù)根;命題q:方程x2+3mx+1=0無(wú)實(shí)根.若p∨q為真,¬q為真,則實(shí)數(shù)m的取值范圍是m≤-$\frac{2}{3}$,或$\frac{2}{3}$≤m<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)bn=log3$\frac{3}{{a}_{n}}$,求數(shù)列{$\frac{_{n}}{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案