8.已知集合M={x|x2+x-6=0},N={y|ay+2=0,a∈R},若滿足M∩N=N的所有實(shí)數(shù)a形成集合為A,則A的子集有個(gè)8.

分析 求出集合M={-3,2},N={-$\frac{2}{a}$},由M∩N=N,得N?M,從而-$\frac{2}{a}$不存在,或-$\frac{2}{a}$=-3,或-$\frac{2}{a}=2$,進(jìn)而求出集合A,由此能求出A的子集個(gè)數(shù).

解答 解:∵集合M={x|x2+x-6=0}={-3,2},
N={y|ay+2=0,a∈R}={-$\frac{2}{a}$},
∵M(jìn)∩N=N,∴N?M,
∴-$\frac{2}{a}$不存在,或-$\frac{2}{a}$=-3,或-$\frac{2}{a}=2$,
解得a=0或a=$\frac{2}{3}$或a=-1,
∴集合A={-1,0,$\frac{2}{3}$},
∴A的子集有23=8個(gè).
故答案為:8.

點(diǎn)評(píng) 本題考查集合的子集個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.雙曲線x2-y2=2016的左、右頂點(diǎn)分別為A1、A2,P為其右支上一點(diǎn),且P不在x軸上,若∠A1PA2=4∠PA1A2,則∠PA1A2等于( 。
A.$\frac{π}{12}$B.$\frac{π}{36}$C.$\frac{π}{18}$D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.求滿足${(\frac{1}{4})^{x-1}}$>16的x的取值集合是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列各組中的兩個(gè)集合M和N,表示同一集合的是( 。
A.M={3,6},N={(3,6)}B.M={π},N={3.1415926}
C.M={x|1<x<3,x∈R},N={2}D.$M=\left\{{1,\sqrt{5},π}\right\},N=\left\{{1,π,|{-\sqrt{5}}|}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)是定義在R上的偶函數(shù),且$x≤0時(shí),f(x)={log_{\frac{1}{3}}}({-x+1})$.
(1)求f(0),f(2);               
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.給出下列說(shuō)法:
(1)命題“若a、b都是奇數(shù),則a+b是偶數(shù)”的否命題是“若a、b都不是奇數(shù),則a+b不是偶數(shù)”;
(2)命題“如果A∩B=A,那么A∪B=B”是真命題;
(3)“x≠1或y≠2”是“x+y≠3”的必要不充分條件.
那么其中正確的說(shuō)法有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_2}(2-x),x<1\\{2^{x-2}},x≥1\end{array}\right.$,則f(-2)+f(log212)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題:?x∈R,則2x2+2x+$\frac{1}{2}$<0的否定是( 。
A.?x∈R,則2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,則2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,則2x02+2x0+$\frac{1}{2}$<0D.?x∈R,則2x2+2x+$\frac{1}{2}$>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(sinωx,0)(ω>0),且函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$在[-$\frac{π}{6}$,0]上的最小值為$-\sqrt{3}$,將函數(shù)f(x)的圖象上所有的點(diǎn)向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,得到的函數(shù)g(x)的圖象,且已知函數(shù)g(x)的圖形關(guān)于直線x=$\frac{7π}{12}$對(duì)稱.
(1)求函數(shù)g(x)的解析式;
(2)在△ABC中,a,b,c分別為∠A,∠B,∠C對(duì)應(yīng)的邊,若函數(shù)g(A)=0,a=5,求△ABC的面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案