4.已知$\frac{cos2x}{\sqrt{2}cos(x+\frac{π}{4})}$=$\frac{1}{5}$,則sin2x=( 。
A.-$\frac{24}{25}$B.-$\frac{4}{5}$C.$\frac{24}{25}$D.$\frac{2\sqrt{5}}{5}$

分析 利用二倍角的余弦公式、兩角差的余弦公式化簡所給的等式求得cosx+sinx=$\frac{1}{5}$,平方可得sin2x的值.

解答 解:∵已知$\frac{cos2x}{\sqrt{2}cos(x+\frac{π}{4})}$=$\frac{{cos}^{2}x{-sin}^{2}x}{\sqrt{2}•(\frac{\sqrt{2}}{2}cosx-\frac{\sqrt{2}}{2}sinx)}$=cosx+sinx=$\frac{1}{5}$,平方可得1+2sinxcosx=$\frac{1}{25}$,
∴sin2x=2sinxcosx=-$\frac{24}{25}$,
故選:A.

點(diǎn)評 本題主要考查二倍角的余弦公式、同角三角函數(shù)的基本關(guān)系、兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用m,n表示兩條不同的直線,α,β表示兩個不同的平面,給出下列命題:
①若m⊥n,m⊥α,則n∥α; 
②若m∥α,α⊥β則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β,
其中,正確命題是(  )
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax+1,a∈R.
(Ⅰ)求f(x)在x=1處的切線方程;
(Ⅱ)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)$f(x)=\frac{{3{x^2}+ax}}{e^x},a∈R$.
(1)若f(x)在x=0處取得極值,求實(shí)數(shù)a的值;
(2)若f(x)在[3,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.長方體一個頂點(diǎn)上三條棱的長分別為6,8,10,且它們的頂點(diǎn)都在同一個球面上,則這個球的表面積是( 。
A.$20\sqrt{2}$B.$25\sqrt{2}π$C.50πD.200π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,公差d=2,a2是a1與a4的等比中項(xiàng).
(1)求an
(2)設(shè)bn=(-1)n•2${\;}^{{a}_{n}}$,n∈N*,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$f(x)=2\sqrt{x}+1$,則$\lim_{△x→0}\frac{f(1+△x)-f(1)}{△x}$=( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,過點(diǎn)P(2,0)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\sqrt{3}t}\\{y=t}\end{array}\right.$(t為參數(shù)),圓C的方程為x2+y2=4.以直角坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l的普通方程和圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出以下四個說法:
①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,R2的值越大,說明擬合的效果越好;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則P(ξ>4)=$\frac{1}{2}$;
④對分類變量X與Y,若它們的隨機(jī)變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的犯錯誤的概率越小;
其中正確的說法是②③.

查看答案和解析>>

同步練習(xí)冊答案