7.已知函數(shù)f(x)=$\frac{x^2}{{1+{x^2}}}$,
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)歸納猜想一般性結(jié)論,并給出證明;
(3)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

分析 (1)f(x)=$\frac{x^2}{{1+{x^2}}}$,利用函數(shù)性質(zhì)能求出f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值.
(2)猜想f(x)+f($\frac{1}{x}$)=1,再利用函數(shù)性質(zhì)進(jìn)行證明.
(3)由f(x)+f($\frac{1}{x}$)=1,能求出f(1)+[f(1)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2016)+f($\frac{1}{2016}$)]的值.

解答 解 (1)∵f(x)=$\frac{x^2}{{1+{x^2}}}$,

∴f(2)+f($\frac{1}{2}$)=$\frac{{2}^{2}}{1+{2}^{2}}+\frac{(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=$\frac{4}{1+4}+\frac{1}{1+4}$=1,…(2分)
f(3)+f($\frac{1}{3}$)=$\frac{{3}^{2}}{1+{3}^{2}}$+$\frac{(\frac{1}{3})^{2}}{1+(\frac{1}{3})^{2}}$=$\frac{9}{1+9}$+$\frac{1}{1+9}$=1.…(4分)
(2)由(1)猜想f(x)+f($\frac{1}{x}$)=1,…(6分)
證明:f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{(\frac{1}{x})^{2}}{1+(\frac{1}{x})^{2}}$=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1.…(8分)
(3)由(2)可得,
原式=f(1)+[f(1)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2016)+f($\frac{1}{2016}$)]
=f(1)+2015=$\frac{1}{2}+2015$=$\frac{4031}{2}$.…(12分)

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{a+lnx}{x}$(a∈R).
(1)求函數(shù)f(x)的極值;
(2)若a>1,求證:存在x0∈(0,+∞),使得f(x0)>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{5π}{4}$),直線1的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且點(diǎn)A在直線1上
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)若曲線C的極坐標(biāo)方程為ρ+sinθ=0,試判斷直線l與曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,設(shè)不等式組$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤1\end{array}\right.$表示的平面區(qū)域?yàn)殚L方形ABCD,長方形ABCD內(nèi)的曲線
為拋物線y=x2的一部分,若在長方形ABCD內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率等于( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,矩形OABC內(nèi),陰影部分是由直線y=x-4,曲線y=$\sqrt{2x}$以及x軸圍成,在矩形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是(  )
A.$\frac{7}{12}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在區(qū)間[0,6]上隨機(jī)地取一個(gè)數(shù)m,則事件“關(guān)于x的方程x2+2mx+m+2=0有實(shí)根”發(fā)生的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足asinC=$\sqrt{3}$ccosA.
(1)求角A的大小;
(2)若c=4,a=5$\sqrt{3}$,求cos(2C-A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={y|y=sinx,x∈R},B={x|$\frac{1}{9}$<($\frac{1}{3}$)x<3},則A∩B等于( 。
A.{x|-1≤x≤1}B.{x|-1≤x<1}C.{x|-1<x≤1}D.{x|-1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.旋轉(zhuǎn)一枚均勻的硬幣,會(huì)出現(xiàn)( 。﹤(gè)基本事件.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案