【題目】2019年7月,超強臺風登陸某地區(qū).據(jù)統(tǒng)計,本次臺風造成該地區(qū)直接經(jīng)濟損失119.52億元.經(jīng)過調(diào)查住在該地某小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,作出如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失;
(2)臺風后區(qū)委會號召小區(qū)居民為臺風重災(zāi)區(qū)捐款,經(jīng)過調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
(3)臺風造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由王師傅和張師傅兩人進行維修,王師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求王師傅比張師傅早到小區(qū)的概率.
附:臨界值表
參考公式:,.
【答案】(1)3360;(2)有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān);(3)
【解析】
(1)根據(jù)由頻率分布直方圖計算平均數(shù)的方法,計算出平均損失.
(2)根據(jù)已知條件填寫列聯(lián)表,計算出的值,由此判斷出有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān).
(3)利用面積型幾何概型的概率計算方法,計算出所求概率.
(1)記每戶居民的平均損失為元,則:
(2)如圖:
,
所以有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān).
(3)設(shè)王師傅,張師傅到小區(qū)的時間分別為,則可以看成平面中的點.
試驗的全部結(jié)果所構(gòu)成的區(qū)域為,則,事件表示王師傅比張師傅早到小區(qū),所構(gòu)成的區(qū)域為,
即圖中的陰影部分:面積,所以,
∴王師傅比張師傅早到小區(qū)的概率是.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)的圖象在處取得極值4.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對于函數(shù),若存在兩個不等正數(shù),,當時,函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)f(x)對x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,則實數(shù)m的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩陶瓷廠生產(chǎn)規(guī)格為的矩形瓷磚(長和寬都約為) ,根據(jù)產(chǎn)品出廠檢測結(jié)果,每片瓷磚質(zhì)量(單位:)在之間的稱為正品,其余的作為廢品直接回爐處理.正品瓷
磚按行業(yè)生產(chǎn)標準分為“優(yōu)等”、“一級”、“合格”三個標準,主要按照每片瓷磚的“尺寸誤差”加以劃分,每片價格分別為元、元、元.若規(guī)定每片正品瓷磚的“尺寸誤差”計算方式為,設(shè)矩形瓷磚的長與寬分別為(單位:) ,則“尺寸誤差”為,“優(yōu)等”瓷磚的“尺寸誤差”范圍是,“一級”瓷磚的“尺寸誤差”范圍是,“合格”瓷磚的“尺寸誤差”范圍是.現(xiàn)分別從甲、乙兩廠生產(chǎn)的正品瓷磚中隨機抽取片瓷磚,相應(yīng)的“尺寸誤差”組成的樣本數(shù)據(jù)如下:
(甲廠產(chǎn)品的“尺寸誤差”頻數(shù)表)
尺寸誤差 | 頻數(shù) |
(乙廠產(chǎn)品的“尺寸誤差”柱狀圖)
(1)根據(jù)樣本數(shù)據(jù)分別計算甲、乙兩廠生產(chǎn)的正品瓷磚的“尺寸誤差”的平均值;
(2)若用這個樣本的頻率分布估計總體分布,求乙廠所生產(chǎn)的正品瓷磚的平均價格;
(3)現(xiàn)用分層抽樣的方法從甲廠生產(chǎn)的片樣本瓷磚中隨機抽取片,再從抽取的片瓷磚中的“一級”瓷磚與“合格”瓷磚中隨機選.取片進一步分析其“平整度”,求這片瓷磚的價格之和大于元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,軸非負半軸為極軸,長度單位相同,建立極坐標系,曲線的極坐標方程為,直線過點,傾斜角為.
(1)將曲線的極坐標方程化為直角坐標方程,寫出直線的參數(shù)方程的標準形式;
(2)已知直線交曲線于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.
(1)求的方程;
(2)直線交于,兩點,且.已知上存在點,使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com