16.設(shè)函數(shù)f(x)=x+cosx,若曲線y=f(x)在點(π,f(π))處的切線方程為y=ax+b,則a+b=0.

分析 求得函數(shù)f(x)的導(dǎo)數(shù),可得切線的斜率和切點坐標(biāo),由已知切線方程,可得a,b,進(jìn)而得到所求和.

解答 解:函數(shù)f(x)=x+cosx的導(dǎo)數(shù)為f′(x)=1-sinx,
可得曲線y=f(x)在點(π,f(π))處的切線斜率為1-sinπ=1,
又f(π)=π+cosπ=π-1,
由切線方程為y=ax+b,可得a=1,b=π-1-π=-1.
則a+b=0.
故答案為:0.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用直線方程是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,m,n是兩條相交直線,l1,l2是與m,n都垂直的兩條直線,且直線l與l1,l2都相交,求證:∠1=∠2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x+1|-|x-a|(a>0).
(1)當(dāng)a=4時,解關(guān)于x的不等式f(x)>2;
(2)若f(x)的圖象與x軸圍成的三角形的面積為6,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)F(x)=cos(2x-$\frac{π}{3}$)+3|f(x)+1|-m,x∈[-$\frac{π}{2}$,$\frac{π}{3}$]有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.現(xiàn)有兩本相同的數(shù)學(xué)書,兩本相同的英語書(記a,b分別表示數(shù)學(xué)書和英語書),從中取出兩本書送給小朋友,則所有不同的選法為aa,ab,bb(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=2ax-2+1(a>0且a≠1)的圖象必過定點(  )
A.(0,2)B.(0,3)C.(2,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足i•z=1+i,則z=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點F為拋物線C:y2=4x的焦點,點P是準(zhǔn)線l上的動點,直線PF交拋物線于A、B兩點,若點P的縱坐標(biāo)是m(m≠0),點D為準(zhǔn)線l與x軸的交點.
(1)若m=2,求△DAB的面積;
(2)設(shè)$\overrightarrow{AF}$=λ$\overrightarrow{FB}$,$\overrightarrow{AP}$=μ$\overrightarrow{PB}$,求證λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.根據(jù)歷年氣象統(tǒng)計資料,五月中旬某天某地刮大風(fēng)的概率為0.4,降雨的概率為0.5,既刮大風(fēng)又降雨的概率為0.3,則在刮大風(fēng)的條件下降雨的概率為(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案