分析 (1)由三角函數(shù)公式化簡(jiǎn)可得f(x)=$\frac{1}{2}$cos2x-$\frac{1}{4}$;
(2)由周期公式可得;
(3)可得h(x)=$\frac{\sqrt{2}}{2}$cos(2x+$\frac{π}{4}$),易得函數(shù)的最大值和x的集合.
解答 解:(1)由三角函數(shù)公式化簡(jiǎn)可得:
f(x)=($\frac{1}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx)($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx)
=$\frac{1}{4}$cos2x-$\frac{3}{4}$sin2x=$\frac{1}{4}$•$\frac{1+cos2x}{2}$-$\frac{3}{4}$•$\frac{1-cos2x}{2}$
=$\frac{1}{2}$cos2x-$\frac{1}{4}$;
(2)由(1)可得f(x)=$\frac{1}{2}$cos2x-$\frac{1}{4}$,
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π;
(3)h(x)=f(x)-g(x)
=$\frac{1}{2}$cos2x-$\frac{1}{4}$-($\frac{1}{2}$sin2x-$\frac{1}{4}$)
=$\frac{1}{2}$cos2x-$\frac{1}{2}$sin2x
=$\frac{\sqrt{2}}{2}$cos(2x+$\frac{π}{4}$),
∴h(x)的最大值為$\frac{\sqrt{2}}{2}$,
此時(shí)x滿(mǎn)足2x+$\frac{π}{4}$=2kπ,解得x=kπ-$\frac{π}{8}$,
故此時(shí)x的集合為{x|x=kπ-$\frac{π}{8}$,k∈Z}
點(diǎn)評(píng) 本題考查三角函數(shù)的最值,涉及三角函數(shù)的周期性,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\overrightarrow{{e}_{1}},2\overrightarrow{{e}_{2}},-3\overrightarrow{{e}_{3}}$) | B. | (-1,2,-3) | C. | (1,-2,3) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com