1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x}(x≤2)}\\{{x}^{2}-x-5(x>2)}\end{array}\right.$,則f[f(3)]等于(  )
A.-1B.1C.-5D.5

分析 根據(jù)分段函數(shù)的表達式,利用代入法進行求解即可.

解答 解:f(3)=32-3-5=9-3-5=1,
f(1)=1-2=-1,
即f[f(3)]=f(1)=-1,
故選:A

點評 本題主要考查函數(shù)值的計算,根據(jù)分段函數(shù)的表達式,利用代入法是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.隨著國民生活水平的提高,利用長假旅游的人越來越多.某公司統(tǒng)計了2012到2016年五年間本公司職員每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計數(shù)據(jù)如表所示:
年份(x)20122013201420152016
家庭數(shù)(y)610162226
(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個的概率;
(Ⅱ)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\hat y=\hat bx+\hat a$,判斷它們之間是正相關(guān)還是負相關(guān);并根據(jù)所求出的直線方程估計該公司2019年春節(jié)期間外出旅游的家庭數(shù).
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{OA}$=(-1,3),$\overrightarrow{OB}$=(3,-1),$\overrightarrow{OC}$=(m,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,求實數(shù)m的值;
(2)若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若集合A={1,m2},B={3,4},則“m=2”是“A∩B={4}”的充分不必要條件.(填“充分不必要條件”、“必要不充分條件”、“充分必要條件”、“既不充分也不必要條件”中的一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知k∈Z,角的終邊只落在y軸正半軸上的角是(  )
A.$\frac{kπ}{2}$B.kπ+$\frac{π}{2}$C.2kπ+$\frac{π}{2}$D.2kπ-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知正三棱柱ABC-A′B′C′的各棱長相等,表面積為12+2$\sqrt{3}$,則三棱柱ABC-A′B′C′的體積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在四面體S-ABC中,SA=SB=SC=1,∠ASB=∠ASC=60°,∠BSC=90°,D是BC的中點.求證:
(1)SD⊥平面ABC;
(2)AD⊥SC;
(3)BC⊥SA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.分別從A網(wǎng)和B網(wǎng)上對某一型號家用電器的日銷售量(單位:臺)進行統(tǒng)計,最近50天的統(tǒng)計結(jié)果知下:
日銷售量(臺) 100150 200 
 頻數(shù) 10 25 15
 頻率 0.2 0.5 0.3
(A網(wǎng))
日銷售量(臺) 100150 200 
 頻數(shù) 15 15 20
 頻率 0.3 0.3 0.4
(B網(wǎng))
若以上表中頻率作為概率,且每天的銷售量相互獨立.
(1)這兩個平臺,哪一個平臺該產(chǎn)品的銷售量更穩(wěn)定些;
(2)以A網(wǎng)為研究對象,已知每臺該電器的銷售利潤為0.2(千元),用ξ表示該種電器2天銷售利潤的和(單位:千元),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知兩點A(-3,$\sqrt{3}$),B($\sqrt{3}$,-1),則直線AB的傾斜角θ等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5}{6}π$

查看答案和解析>>

同步練習(xí)冊答案