計算:4log420-ln
e
+lg4-lg
1
25
考點:對數(shù)的運算性質
專題:函數(shù)的性質及應用
分析:根據(jù)指數(shù)的運算性質和對數(shù)的運算性質,直接運算可得答案.
解答: 解:4log420-ln
e
+lg4-lg
1
25

=2+1-
1
2
+lg(4÷
1
25

=2+1-
1
2
+lg100
=2+1-
1
2
+2
=4
1
2
點評:本題考查的知識點是指數(shù)的運算性質和對數(shù)的運算性質,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圖甲為函數(shù)y=f(x)的圖象,則圖乙中的圖象對應的函數(shù)可能為( 。
A、y=|f(x)|
B、y=f(|x|)
C、y=f(-|x|)
D、y=-f(-|x|)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在2點至3點之間的某一時刻,分針與時針分別在鐘面上“2”字的兩側,而且與“2”字的距離相等,這一時刻是( 。
A、2時6
3
13
B、2時7
1
13
C、2時8
5
13
D、2時9
3
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(ωx-
π
6
)-2cos2
ω
2
x+1(ω>0),直線y=
3
與函數(shù)y=f(x)圖象相鄰兩交點的距離為π.(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(
π
3
-x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)對一切實數(shù)x,y都有g(x+y)-g(y)-x(x+2y+1)成立,是g(x)=0,且f(x)=
g(x)-3x+3
x

(1)求g(0)的值;
(2)求f(x)的解析式;
(3)已知k∈R,設P:不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,Q:f(|2x-1|)+k
2
|2x-1|
-3k=0有三個不同的實數(shù)解,如果滿足P成立的k的集合記為A,滿足Q成立的k的集合記為B,求A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從集合{-1,1,2}中隨機選取一個數(shù)記為m,從集合{-1,2}中隨機選取一個數(shù)記為n,則方程
x2
m
+
y2
n
=1表示雙曲線的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在圓的直徑AB的延長線上任取一點C,過點C作圓的切線CD,切點為D,∠ACD的平分線交AD于點E,則∠CED
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非零向量
a
,
b
滿足|
a
+
b
|=|
a
-
b
|=2|
b
|,則
a
+
b
a
-
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列幾個命題:①不等式
3
x-1
<x+1的解集為{x|x<-2,或x>2};②已知a,b均為正數(shù),且
1
a
+
4
b
=1,則a+b的最小值為9;③已知x,y均為正數(shù),且x+3y-2=0,則3x+27y+1的最小值為7;其中正確的有
 
.(以序號作答)

查看答案和解析>>

同步練習冊答案