7.平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿BD將四邊形折成直二面角A-BD-C,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=8,則三棱錐A-BCD的外接球的表面積為8π.

分析 由已知中$\overrightarrow{AB}$•$\overrightarrow{BD}$=0可得AB⊥BD,沿BD折起后,由平面ABD⊥平面BDC,可得三棱錐A-BCD的外接球的直徑為AC,進(jìn)而根據(jù)2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=8,求出三棱錐A-BCD的外接球的半徑,可得三棱錐A-BCD的外接球的表面積.

解答 解:平行四邊形ABCD中,
∵$\overrightarrow{AB}$•$\overrightarrow{BD}$=0
∴AB⊥BD,
沿BD折成直二面角A-BD-C,
∵平面ABD⊥平面BDC
三棱錐A-BCD的外接球的直徑為AC,
∴AC2=AB2+BD2+CD2=2AB2+BD2=8
∴外接球的半徑為$\sqrt{2}$,
故表面積是8π.
故答案為:8π.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,平面向量數(shù)量積的運(yùn)算,其中根據(jù)已知求出三棱錐A-BCD的外接球的半徑是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知球O的內(nèi)接圓柱的軸截面是邊長(zhǎng)為2的正方形,則球O的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)直線l1:mx-(m-1)y-1=0(m∈R),則直線l1恒過(guò)定點(diǎn)(1,1);若直線l1為圓x2+y2+2y-3=0的一條對(duì)稱軸,則實(shí)數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.下列說(shuō)法中:
①兩個(gè)有共同起點(diǎn)且相等的向量,其終點(diǎn)一定相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,則|$\overrightarrow{a}$=$\overrightarrow$;
③若非零向量$\overrightarrow{a},\overrightarrow$共線,則$\overrightarrow{a}=\overrightarrow$;
④向量$\overrightarrow{a}=\overrightarrow$,則向量$\overrightarrow{a},\overrightarrow$共線;
⑤由于零向量的方向不確定,故其不能與任何向量平行;
其中正確的序號(hào)為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.執(zhí)行下面的程序輸出的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的圖象兩相鄰對(duì)稱軸之間的距離是$\frac{π}{2}$,若將f(x)的圖象先向右平移$\frac{π}{6}$個(gè)單位,再向上平移$\sqrt{3}$個(gè)單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;     
 (2)求f(x)的對(duì)稱軸及單調(diào)區(qū)間;
(3)若對(duì)任意x∈[0,$\frac{π}{3}}$],f2(x)-(2+m)f(x)+2+m≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知O點(diǎn)為△ABC所在平面內(nèi)一點(diǎn),且滿足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,現(xiàn)將一粒質(zhì)點(diǎn)隨機(jī)撒在△ABC內(nèi),若質(zhì)點(diǎn)落在△AOC的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x3+ax-b=0,至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( 。
A.方程x3+ax-b=0沒(méi)有實(shí)根B.方程x3+ax-b=0至多有一個(gè)實(shí)根
C.方程x3+ax-b=0至多有兩個(gè)實(shí)根D.方程x3+ax-b=0恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的60%,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的75%,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評(píng)價(jià)的2×2列聯(lián)表:
對(duì)教師管理水平好評(píng)對(duì)教師管理水平不滿意合計(jì)
對(duì)教師教學(xué)水平好評(píng)
對(duì)教師教學(xué)水平不滿意
合計(jì)
問(wèn):是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)、
(2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量X;
①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案