若曲線C1:x2+y2-4x=0與曲線C2:y(y-mx-x)=0有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A、(-
2
5
5
,
2
5
5
B、(-
2
5
5
,0)∪(0,
2
5
5
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)
考點(diǎn):直線與圓的位置關(guān)系
專(zhuān)題:綜合題,直線與圓
分析:曲線C1表示以C1:(4,0)為圓心、半徑等于4的圓;①當(dāng)m≠0時(shí),曲線C2表示x軸及過(guò)點(diǎn)(-1,0)且斜率為m的直線,要使兩條曲線有四個(gè)不同交點(diǎn),需y=m(x+1)和圓 (x-4)2+y2=16 相交,根據(jù)圓心到此直線的距離小于半徑,求得m的范圍.②當(dāng)m=0時(shí),檢驗(yàn)不滿足條件.綜合可得m的范圍.
解答: 解:曲線C1:x2+y2-4x=0 即(x-2)2+y2=4,表示以C1:(2,0)為圓心、半徑等于2的圓.
對(duì)于曲線C2:y(y-mx-m)=0,
①當(dāng)m≠0時(shí),曲線C2即 y=0,或y=m(x+1),表示x軸及過(guò)點(diǎn)(-1,0)且斜率為m的直線,
要使兩條曲線有四個(gè)不同交點(diǎn),需y=m(x+1)和圓(x-2)2+y2=4相交,
故有
|3m|
m2+1
<2,求得-
2
5
5
<m<
2
5
5
,且m≠0.
②當(dāng)m=0時(shí),曲線C2:即y2=0,即y=0,表示一條直線,此時(shí)曲線C2和曲線C1 只有一個(gè)交點(diǎn),不滿足條件.
綜上可得,實(shí)數(shù)m的取值范圍是(-
2
5
5
,0)∪(0,
2
5
5
),
故選:B.
點(diǎn)評(píng):本題主要考查曲線的方程,直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1+a2+…+an=
n
2
an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,a1=b1=2,a2=b2
(Ⅰ)求{an}、{bn}的 通項(xiàng)公式.
(Ⅱ)若對(duì)每個(gè)正整數(shù)k,在bk和bk+1之間插入ak個(gè)2,得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上是單調(diào)減函數(shù)的是( 。
A、y=x
1
2
B、y=cosx
C、y=ln|x+1|
D、y=-2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=cos2x+asinx在區(qū)間(
π
6
,
π
2
)是減函數(shù),則a的取值范圍是( 。
A、(2,4)
B、(-∞,2]
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(x0,y0)不在曲線f(x,y)=0上,曲線f(x,y)+af(x0,y0)=0(a∈R,且a≠0)與曲線f(x,y)=0的交點(diǎn)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市為考核一學(xué)校質(zhì)量,對(duì)該校甲、乙兩班各50人進(jìn)行測(cè)驗(yàn),根據(jù)這兩班的成績(jī)繪制莖葉圖如圖1:
(1)求甲、乙兩班成績(jī)的中位數(shù),并將甲乙兩班數(shù)據(jù)合在一起,繪出這些數(shù)據(jù)的頻率分布直方圖;
(2)根據(jù)抽樣測(cè)驗(yàn),從成績(jī)的個(gè)位數(shù)為2的同學(xué)中任選4人,設(shè)這4人中有ξ人來(lái)自甲班,求隨機(jī)變量ξ的分布列和期望值;
(3)根據(jù)莖葉圖2分析甲、乙兩班成績(jī)的特點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2-x-2a,g(x)=ax+b,其中a,b∈Ra>0.已知f(1)+g(1)+3=0.
(1)求b的值;
(2)設(shè)集合A={y|y=f(x),x∈[-2,0]},B={y|y=g(x),x∈[-2,0]}且A∩B≠ϕ試求a的取值范圍
(3)是否存在實(shí)數(shù)a,使得對(duì)于任意的正數(shù)x,都有f(x)•g(x)≥0?若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
•(
b
+
c
),其中向量
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過(guò)怎樣變化得出?
(3)若不等式|f(x)-m|<2在x∈[
π
8
π
2
]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足x-y+1=0(-1≤x≤4),則(x-3)2+y2的取值范圍是
 
;
y-2
x
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案