7.已知x為實數(shù),若復數(shù)z=(x2-1)+(x+1)i為純虛數(shù),則$\frac{x+{i}^{3}}{1+i}$的值為( 。
A.1B.-1C.iD.-i

分析 先根據(jù)復數(shù)z=(x2-1)+(x+1)i為純虛數(shù),求出x的值,再化簡即可.

解答 解:復數(shù)z=(x2-1)+(x+1)i為純虛數(shù),
∴x+1=0,即x=-1,
∴$\frac{x+{i}^{3}}{1+i}$=$\frac{-1-i}{1+i}$=-1,
故選:B.

點評 本題主要考查復數(shù)的基本概念,兩個復數(shù)代數(shù)形式的乘除法法則的應用,虛數(shù)單位i的冪運算性質(zhì),屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.設a、b為正實數(shù),且$\frac{1}{a}$+$\frac{1}$=2$\sqrt{2}$.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y>0}\end{array}\right.$,則z=y-2|x|的最大值為( 。
A.-8B.-4C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y-2≤0\\ y≤1.\end{array}\right.$,則目標函數(shù)z=x-3y的最小值為( 。
A.0B.1C.$-\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且橢圓C與圓M:x2+(y-3)2=4的公共弦長為4
(1)求橢圓C的方程;
(2)已知O為坐標原點,過橢圓C的右頂點A作直線l與圓x2+y2=$\frac{8}{5}$相切并交橢圓C于另一點,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$和$\overrightarrow$的夾角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在平面直角坐標系xOy中,已知點A,B分別為x軸,y軸上一點,且|AB|=1,若P(1,$\sqrt{3}$ ),則|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|的取值范圍是( 。
A.[5,6]B.[6,7]C.[6,9]D.[5,7]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.(x+a)(2x-$\frac{1}{x}$)5的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為(  )
A.-40B.-20C.20D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.a(chǎn)rcsin(sin$\frac{4π}{3}$)=-$\frac{π}{3}$.

查看答案和解析>>

同步練習冊答案